无机材料学报 ›› 2019, Vol. 34 ›› Issue (3): 341-348.DOI: 10.15541/jim20180249
所属专题: 热电材料与器件
• 研究论文 • 上一篇
刘虹霞, 李文, 张馨月, 李娟, 裴艳中
收稿日期:
2018-05-30
出版日期:
2019-03-20
网络出版日期:
2019-02-26
作者简介:
刘虹霞. E-mail: hongxliu@126.com
LIU Hong-Xia1,2,3, LI Wen1, ZHANG Xin-Yue1, LI Juan1, PEI Yan-Zhong1
Received:
2018-05-30
Published:
2019-03-20
Online:
2019-02-26
About author:
LIU Hong-Xia (1992-), female, candidate of PhD. E-mail: hongxliu@126.com
Supported by:
摘要:
具有本征低晶格热导率的I-V-VI2族三元硫属化合物在热电领域引起了广泛关注。AgBiSe2作为这类化合物中少有的n型半导体, 成为一种有潜力的热电材料。本工作系统研究了AgBiSe2的热电性能。基于Ag2Se-Bi2Se二元相图, 单相的(Ag2Se)1-x(Bi2Se3)x的成分在x=0.4~0.62范围可调, 使得该材料载流子浓度具有可调性。结果表明, 通过组分调控获得了较宽范围的载体浓度1.0×1019~5.7×1019 cm-3, 并基于声学声子散射的单一抛物带模型对其电传输性能进行了综合评估。本研究获得的最高载流子浓度接近理论最优值, 在700 K实现了最高ZT值0.5。本研究有助于深入理解AgBiSe2的传输特性和决定热电性能的基本物理参数。
中图分类号:
刘虹霞, 李文, 张馨月, 李娟, 裴艳中. (Ag2Se)1-x(Bi2Se3)x的热电性能研究[J]. 无机材料学报, 2019, 34(3): 341-348.
LIU Hong-Xia, LI Wen, ZHANG Xin-Yue, LI Juan, PEI Yan-Zhong. Thermoelectric Properties of (Ag2Se)1-x(Bi2Se3)x[J]. Journal of Inorganic Materials, 2019, 34(3): 341-348.
Fig. 5 Composition dependent Hall carrier concentration (a) and normalized optical absorption versus photon energy (b) at room temperature for (Ag2Se)1-x(Bi2Se3)x(0.5≤x≤0.56)
Fig. 6 Temperature dependent Hall coefficient (RH) and mobility (µH) (a), deformation potential coefficient (Edef) and density of states effective mass (m*) (b), Hall carrier concentration dependent Hall mobility (c) and Seebeck coefficient (d) at different temperatures for (Ag2Se)1-x(Bi2Se3)x(0.5≤x≤0.56), with a comparison to available literature results[52,64-65]. The experimental results here agree well with the model prediction based on a SPB approximation with a dominant scattering by acoustic phonons
Fig. 7 Temperature dependent Seebeck coefficient (a), electrical resistivity (b), total thermal conductivity (c) and lattice thermal conductivity (d) for (Ag2Se)1-x(Bi2Se3)x(0.5≤x≤0.56), with a comparison to available literature results[63,64]
(Ag2Se)1-x(Bi2Se3)x | νT/ (m•s-1) | νL/ (m•s-1) | νs/ (m•s-1) | B/ GPa | γ | θD /K |
---|---|---|---|---|---|---|
x=0.5 | 1390 | 2560 | 1550 | 31.5 | 1.7 | 158 |
x=0.51 | 1410 | 2610 | 1570 | 32.4 | 1.7 | 159 |
x=0.52 | 1360 | 2500 | 1520 | 29.6 | 1.7 | 154 |
x=0.54 | 1290 | 2660 | 1450 | 37.8 | 2.1 | 146 |
x=0.56 | 1380 | 2760 | 1550 | 39.8 | 2.0 | 156 |
Table 1 Measured sound velocities and the estimated physical parameters for (Ag2Se)1-x(Bi2Se3)x(0.5≤x≤0.56)
(Ag2Se)1-x(Bi2Se3)x | νT/ (m•s-1) | νL/ (m•s-1) | νs/ (m•s-1) | B/ GPa | γ | θD /K |
---|---|---|---|---|---|---|
x=0.5 | 1390 | 2560 | 1550 | 31.5 | 1.7 | 158 |
x=0.51 | 1410 | 2610 | 1570 | 32.4 | 1.7 | 159 |
x=0.52 | 1360 | 2500 | 1520 | 29.6 | 1.7 | 154 |
x=0.54 | 1290 | 2660 | 1450 | 37.8 | 2.1 | 146 |
x=0.56 | 1380 | 2760 | 1550 | 39.8 | 2.0 | 156 |
Fig. 8 Temperature dependent ZT for (Ag2Se)1-x(Bi2Se3)x(0.5≤x≤0.56) (a) and Hall carrier concentration dependentZT at different temperatures (b) with a comparison to model prediction and literature results[52,63-65]
[1] | XI H, LUO L, FRAISSE G.Development and applications of solar-based thermoelectric technologies. Renewable and Sustainable Energy Reviews, 2007, 11(5): 923-936. |
[2] | HAMID ELSHEIKH M, SHNAWAH D A, SABRI M F M, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 2014, 30: 337-355. |
[3] | CADOFF I B, MILLER E. Thermoelectric bmaterials and devices, New York: Reinhold Pub. Corp., 1960: p xiii, 344p. |
[4] | BELL L E.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457-1461. |
[5] | TRITT T M.Recent Trends in Thermoelectric Materials Research. San Diego: Academic Press, 2001. |
[6] | WOOD C.Materials for thermoelectric energy conversion. Reports on Progress in Physics, 1988, 51(4): 459-539. |
[7] | SNYDER G J, TOBERER E S.Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105-114. |
[8] | BHANDARI C M, ROWE D M. Thermoelectric Transport Theory.In CRC handbook of thermoelectrics, Rowe, D. M., Ed. Boca Raton: CRC Press, 1995: 27-42. |
[9] | PEI Y, SHI X, LALONDE A, et al.Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66-69. |
[10] | LIN S, LI W, CHEN Z, et al.Tellurium as a high-performance elemental thermoelectric. Nature Communications, 2016, 7: 10287. |
[11] | CHEN Z, JIAN Z, LI W, et al.Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 2017, 29(23): 1606768. |
[12] | LI W, WU Y, LIN S, et al.Advances in environment-friendly SnTe thermoelectrics. ACS Energy Letters, 2017, 2(10): 2349-2355. |
[13] | LI W, ZHENG L L, GE B H, et al. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Advanced Materials, 2017, 29(17): 1605887-1-8. |
[14] | LI J, ZHANG X, CHEN Z, et al.Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2018, 2(5): 976-987. |
[15] | LI J, CHEN Z, ZHANG X, et al. Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics. Advanced Science, 2017, 4(12): 1700341-1-9. |
[16] | HONG M, CHEN Z G, YANG L, et al. Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Advanced Materials, 2018, 30(11): 1705942-1-8. |
[17] | HONG A J, LI L, ZHU H X, et al.Optimizing the thermoelectric performance of low-temperature SnSe compounds by electronic structure design. Journal of Materials Chemistry A, 2015, 3(25): 13365-13370. |
[18] | LIU W, TAN X, YIN K, et al.Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett., 2012, 108(16): 166601. |
[19] | FU C G, BAI S Q, LIU Y T, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun., 2015, 6: 8144-1-7. |
[20] | CHEN Z, ZHANG X, PEI Y. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 2018,2(1):1705617-1-12. |
[21] | KANATZIDIS M G.Nanostructured thermoelectrics: the new paradigm? Chemistry of Materials, 2010, 22(3): 648-659. |
[22] | PEI Y Z, LENSCH-FALK J, TOBERER E S, et al.High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Advanced Functional Materials, 2011, 21(2): 241-249. |
[23] | XU J J, LI H, DU B L, et al.High ZT in nanostructuring AgSbTe2. Journal of Materials Chemistry, 2010, 20(29): 6138-6143. |
[24] | SCHAUMANN J, LOOR M, UNAL D, et al.Improving the zT value of thermoelectrics by nanostructuring: tuning the nanoparticle morphology of Sb2Te3 by using ionic liquids. Dalton Trans, 2017, 46(3): 656-668. |
[25] | PICHANUSAKORN P, BANDARU P.Nanostructured thermoelectrics. Materials Science and Engineering: R: Reports, 2010, 67(2/3/4): 19-63. |
[26] | ZOU T, QIN X, ZHANG Y, et al. Enhanced thermoelectric performance of beta-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015, 5: 17803-1-9. |
[27] | POUDEL B, HAO Q, MA Y, et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634-638. |
[28] | HONG M, CHEN Z G, YANG L, et al.BixSb2-xTe3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy, 2016, 20: 144-155. |
[29] | HONG M, CHASAPIS T C, CHEN Z G, et al.n-type Bi2Te3-xSexnanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano, 2016, 10(4): 4719-4727. |
[30] | LI W, LIN S, ZHANG X, et al.Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy. Chemistry of Materials, 2016, 28(17): 6227-6232. |
[31] | HU L, ZHU T, LIU X, et al.Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Advanced Functional Materials, 2014, 24(33): 5211-5218. |
[32] | PEI Y, ZHENG L, LI W, et al.Interstitial point defect scattering contributing to high thermoelectric performance in SnTe. Advanced Electronic Materials, 2016, 2(6): 1600019. |
[33] | SHEN J W, ZHANG X Y, CHEN Z W, et al.Substitutional defects enhancing thermoelectric CuGaTe2. Journal of Materials Chemistry A, 2017, 5(11): 5314-5320. |
[34] | BOZHKO V V, NOVOSAD О V, PARASYUK O V, et al.Influence of cation-vacancy defects on the properties of CuInSe2-ZnIn2Se4 solid solutions. Journal of Alloys and Compounds, 2015, 618: 712-717. |
[35] | KIM S I, LEE K H, MUN H A, et al.Thermoelectrics dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109-114. |
[36] | CHEN Z, GE B, LI W, et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat. Commun., 2017, 8: 13828-1-8. |
[37] | LIU H, SHI X, XU F, et al.Copper ion liquid-like thermoelectrics. Nat. Mater., 2012, 11(5): 422-425. |
[38] | QIU W, XI L, WEI P, et al.Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. PNAS, 2014, 111(42): 15031-15035. |
[39] | LI W, LIN S, GE B, et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 2016, 3(11): 1600196-1-7. |
[40] | ZHANG X, CHEN Z, LIN S, et al.Promising thermoelectric Ag5-δTe3 with intrinsic low lattice thermal conductivity. ACS Energy Letters, 2017, 2(10): 2470-2477. |
[41] | LI WEN, LIN SIQI, WEISS MANUEL, et al. Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6. Advanced Energy Materials, 2018, 8: 1800030-1-8. |
[42] | MORELLI D T, JOVOVIC V, HEREMANS J P. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett., 2008, 101(3): 035901-1-4. |
[43] | GUIN S N, NEGI D S, DATTA R, et al.Nanostructuring, carrier engineering and bond anharmonicity synergistically boost the thermoelectric performance of p-type AgSbSe2-ZnSe. Journal of Materials Chemistry A, 2014, 2(12): 4324-4331. |
[44] | HONG A J, GONG J J, LI L, et al.Predicting high thermoelectric performance of ABX ternary compounds NaMgX (X = P, Sb, As) with weak electron-phonon coupling and strong bonding anharmonicity. J. Mater. Chem. C, 2016, 4(15): 3281-3289. |
[45] | LIN S, LI W, LI S, et al.High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule, 2017, 1(4): 816-830. |
[46] | NIELSEN M D, OZOLINS V, HEREMANS J P.Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci., 2013, 6(2): 570-578. |
[47] | MA J, DELAIRE O, MAY A F, et al.Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nat. Nano, 2013, 8(6): 445-451. |
[48] | LI D, QIN X Y, ZOU T H, et al.High thermoelectric properties for Sn-doped AgSbSe2. Journal of Alloys and Compounds, 2015, 635: 87-91. |
[49] | GUIN S N, CHATTERJEE A, NEGI D S, et al.High thermoelectric performance in tellurium free p-type AgSbSe2. Energy & Environmental Science, 2013, 6(9): 2603-2608. |
[50] | GUIN S N, CHATTERJEE A, BISWAS K.Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping. RSC Advances, 2014, 4(23): 11811-11815. |
[51] | CAI S, LIU Z, SUN J, et al.Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe2. Dalton Trans, 2015, 44(3): 1046-1051. |
[52] | PAN L, BERARDAN D, DRAGOE N.High thermoelectric properties of n-type AgBiSe2. [J]. Am. Chem. Soc., 2013, 135(13): 4914-4917. |
[53] | ZOU M, LIU Q, WU CF, et al.Comparing the role of annealing on the transport properties of polymorphous AgBiSe2 and monophase AgSbSe2. RSC Advances, 2018, 8(13): 7055-7061. |
[54] | XIAO C, QIN X, ZHANG J, et al.High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide. [J]. Am. Chem. Soc., 2012, 134(44): 18460-18466. |
[55] | GAO W, WANG Z, HUANG J, et al.Extraordinary thermoelectric performance realized in hierarchically structured AgSbSe2 with ultralow thermal conductivity. ACS Appl. Mater. Interfaces, 2018, 10(22): 18685-18692. |
[56] | HONG M, CHEN ZG, YANG L, et al. Achieving ZT>2 in p-type AgSbTe2-xSexalloys via exploring the extra light valence band and introducing dense stacking faults. Advanced Energy Materials, 2018, 8(9): 1702333-1-7. |
[57] | TADAMASA H, KAZUHIRO K, MOTOHISA H.Phase diagrams of the pseudo-binary Cu2Se-Bi2Se3 and Ag2Se-Bi2Se3 systems and thermoelectric properties of Cu2Se-Bi2Se3 solid solution. Advanced Energy Conversion, 1966, 6(4): 195-200. |
[58] | WERNICK J H, GELLER S, BENSON K E.Constitution of the AgSbSe2-AgSbTe2-AgBiSe2-AgBiTe2 system. Journal of Physics & Chemistry of Solids, 1958, 7(2): 240-248. |
[59] | MANOLIKAS C, SPYRIDELIS J.Electron microscopic study of polymorphismand defects in AgBiSe2 and AgBiS2. Mat. Res. Bull., 1977, 12: 907-913. |
[60] | GELLER S, WERNICK J H.Ternary semiconducting compounds with sodium chloride-like structure-AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2. Inorganic Chemistry, 2001, 20(7): 2246-2250. |
[61] | HOANG K, MAHANTI S D.Atomic and electronic structures of I-V-VI2 ternary chalcogenides. Journal of Science: Advanced Materials and Devices, 2016, 1(1): 51-56. |
[62] | WU H J, WEI P C, CHENG H Y, et al.Ultralow thermal conductivity in n-type Ge-doped AgBiSe2 thermoelectric materials. Acta Materialia, 2017, 141: 217-229. |
[63] | LIU X C, JIN D, LIANG X. Enhanced thermoelectric performance of n-type transformable AgBiSe2 polymorphs by indium doping. Applied Physics Letters, 2016, 109(13): 133901-1-5. |
[64] | GOTO Y, NISHIDA A, NISHIATE H, et al.Effect of Te substitution on crystal structure and transport properties of AgBiSe2 thermoelectric material. Dalton Trans., 2018, 47(8): 2575-2580. |
[65] | GUIN S N, SRIHARI V, BISWAS K.Promising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion doping. Journal of Materials Chemistry A, 2015, 3(2): 648-655. |
[66] | BHANDARI C M, ROWE D M.Optimization of Carrier Concentration. In CRC Handbook of Thermoelectrics, Rowe, D. M., Ed. Boca Raton: CRC Press, 1995: 43-53. |
[67] | PEI Y Z, GIBBS Z M, GLOSKOVSKII A, et al. Optimum carrier concentration in n-type PbTe thermoelectrics. Advanced Energy Materials, 2014, 4(13): 1400486-1-12. |
[68] | ZHANG X Y, PEI Y Z. Manipulation of charge transport in thermoelectrics. npj Quantum Materials, 2017, 2: 68-1-5. |
[69] | LI W, CHEN Z, LIN S, et al.Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys. Journal of Materiomics, 2015, 1(4): 307-315. |
[70] | GIBBS Z M, LALONDE A, SNYDER G J. Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New Journal of Physics, 2013, 15(7): 075020-1-18. |
[71] | PARKER D S, MAY A F, SINGH D J. Benefits of carrier-pocket anisotropy to thermoelectric performance: the case of p-type AgBiSe2. Physical Review Applied, 2015, 3(6):064003-1-11. |
[72] | BOCHER F, CULVER S P, PEILSTOCKER J, et al.Vacancy and anti-site disorder scattering in AgBiSe2 thermoelectrics. Dalton Trans, 2017, 46(12): 3906-3914. |
[73] | ROUFOSSE M, KLEMENS P G.Thermal conductivity of complex dielectric crystals. Physical Review B, 1973, 7(12): 5379-5386. |
[74] | SANDITOV D S, BELOMESTNYKH V N.Relation between the parameters of the elasticity theory and averaged bulk modulus of solids. Technical Physics, 2011, 56(11): 1619-1623. |
[75] | BHARDWAJ A, RAJPUT A, SHUKLA A K, et al.Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Advances, 2013, 3: 8504-8516. |
[1] | 汪波, 余健, 李存成, 聂晓蕾, 朱婉婷, 魏平, 赵文俞, 张清杰. Gd/Bi0.5Sb1.5Te3热电磁梯度复合材料的服役稳定性[J]. 无机材料学报, 2023, 38(6): 663-670. |
[2] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[3] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[4] | 王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏. 熵调控抑制ZrNiSn基half-Heusler热电材料的晶格热导率[J]. 无机材料学报, 2022, 37(7): 717-723. |
[5] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
[6] | 娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋. Ge掺杂MnTe材料的热电输运性能[J]. 无机材料学报, 2022, 37(2): 209-214. |
[7] | 刘丹, 赵亚欣, 郭锐, 刘艳涛, 张志东, 张增星, 薛晨阳. 退火条件对磁控溅射MgO-Ag3Sb-Sb2O4柔性薄膜热电性能的影响[J]. 无机材料学报, 2022, 37(12): 1302-1310. |
[8] | 任培安, 汪聪, 訾鹏, 陶奇睿, 苏贤礼, 唐新峰. Te与In共掺杂对Cu2SnSe3热电性能的影响[J]. 无机材料学报, 2022, 37(10): 1079-1086. |
[9] | 金敏, 白旭东, 张如林, 周丽娜, 李荣斌. 区熔法制备金属硫化物Ag2S及其热电性能研究[J]. 无机材料学报, 2022, 37(1): 101-106. |
[10] | 张岑岑, 王雪, 彭良明. 基于分步式双重调控n型(PbTe)1-x-y(PbS)x(Sb2Se3)y体系的热电传输特性[J]. 无机材料学报, 2021, 36(9): 936-942. |
[11] | 逯旭, 侯绩翀, 张强, 樊建锋, 陈少平, 王晓敏. Mg含量对Mg3(1+z)Sb2化合物热电传输性能的影响[J]. 无机材料学报, 2021, 36(8): 835-840. |
[12] | 蔡剑锋, 王泓翔, 刘国强, 蒋俊. 热电材料中的高熵结构设计[J]. 无机材料学报, 2021, 36(4): 399-404. |
[13] | 杨青雨, 仇鹏飞, 史迅, 陈立东. 熵工程在热电材料中的应用[J]. 无机材料学报, 2021, 36(4): 347-354. |
[14] | 杨枭, 苏贤礼, 鄢永高, 唐新峰. (GeTe)nBi2Te3的结构与热电性能研究[J]. 无机材料学报, 2021, 36(1): 75-80. |
[15] | 康慧君,张校影,王燕遐,李建波,杨雄,刘达权,杨泽荣,王同敏. 变价稀土元素Eu掺杂BiCuSeO热电性能的研究[J]. 无机材料学报, 2020, 35(9): 1041-1046. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||