[1] |
DRESSELHAUS·M S, THOMAS I L. Alternative energy technologies.Nature, 2001, 414(6861): 332-337.
|
[2] |
CHU S, MAJUMDAR A.Opportunities and challenges for a sustainable energy future.Nature, 2012, 488(7411): 294-303.
|
[3] |
ARMSTRONG R C, WOLFRAM C, DE JONG K P,et al. The frontiers of energy. Nat. Energy, 2016, 1(1): 15020.
|
[4] |
ZEIER W G, SCHMITT J, HAUTIER G, ,et al. Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater., 2016, 1(6): 16032-1-10.
|
[5] |
RULL-BRAVO M, MOURE A, FERNANDEZ J F,et al. Skutterudites as thermoelectric materials: revisited. RSC Adv., 2015, 5(52): 41653-41667.
|
[6] |
FITRIANI, OVIK R, LONG B D,et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable Sustainable Energy Rev., 2016, 64: 635-659.
|
[7] |
SOOTSMAN J R, CHUNG D Y, KANATZIDIS·M G. New and old concepts in thermoelectric materials.Angew. Chem. Int. Ed., 2009, 48(46): 8616-8639.
|
[8] |
XIAO C, LI Z, LI K,et al. Decoupling interrelated parameters for designing high performance thermoelectric materials. Acc. Chem. Res., 2014, 47(4): 1287-1295.
|
[9] |
URBAN J J.Prospects for thermoelectricity in quantum dot hybrid arrays. Nat. Nanotechnol., 2015, 10(12): 997-1001.
|
[10] |
BEEKMAN M, MORELLI D T, NOLAS G S.Better thermoelectrics through glass-like crystals. Nat. Mater., 2015, 14(12): 1182-1185.
|
[11] |
SNYDER G J, TOBERER E S.Complex thermoelectric materials. Nat. Mater., 2008, 7(2):105-114.
|
[12] |
TAN G, ZHAO L D, KANATZIDIS·M G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev., 2016, 116(19): 12123-12149.
|
[13] |
HICKS L D, DRESSELHAUS·M S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B, 1993, 47(19): 12727-12731.
|
[14] |
OHTA H, KIM S W, MUNE Y,et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater., 2007, 6(2): 129-134.
|
[15] |
SUN Y, CHENG H, GAO S,et al. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc., 2012, 134(50): 20294-20297.
|
[16] |
LIU Y, ZHAO L D, LIU Y,et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc., 2011, 133(50): 20112-20115.
|
[17] |
ZHANG X, CHANG C, ZHOU Y,et al. BiCuSeO thermoelectrics: an update on recent progress and perspective. Materials, 2017, 10(2): 198.
|
[18] |
ZHAO L D, HE J, BERARDAN D,et al. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci., 2014, 7(9): 2900-2924.
|
[19] |
LI J, SUI J, PEI Y,et al. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci., 2012, 5(9): 8543-8547.
|
[20] |
LI Z, XIAO C, FAN S,et al. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J. Am. Chem. Soc., 2015, 137(20): 6587-6593.
|
[21] |
LIU Y, ZHAO L D, ZHU Y, ,et al. Synergistically optimizing electrical. Synergistically optimizing electrical and thermal transport properties of BiCuSeO viaa dual- doping approach. Adv. Energy Mater., 2016, 6(9): 1502423-1-9.
|
[22] |
HEREMANS J P, JOVOVIC V, TOBERER E S,et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554-557.
|
[23] |
XIAO C, XU J, CAO B,et al. Solid-solutioned homojunction nanoplates with disordered lattice: a promising approach toward “phonon glass electron crystal” thermoelectric materials. J. Am. Chem. Soc., 2012, 134(18): 7971-7977.
|
[24] |
WU H J, ZHAO L D, ZHENG F S, et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nat. Commun., 2014, 5: 4515-1-9.
|
[25] |
ZHAO L D, ZHANG X, WU H,et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J. Am. Chem. Soc., 2016, 138(7): 2366-2373.
|
[26] |
MAHAN G D, BARTKOWIAK M.Wiedemann-Franz law at boundaries. Appl. Phys. Lett., 1999, 74(7): 953-954.
|
[27] |
LIU Y, DING J, XU B, ,et al. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl. Phys. Lett., 2015, 106(23): 233903-1-5.
|
[28] |
PEI Y, SHI X, LALONDE A,et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66-69.
|
[29] |
BANIK A, SHENOY U S, ANAND S,et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chem. Mater., 2015, 27(2): 581-587.
|
[30] |
TAN G, SHI F, HAO S,et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J. Am. Chem. Soc., 2015, 137(15): 5100-5112.
|