无机材料学报 ›› 2019, Vol. 34 ›› Issue (3): 260-268.DOI: 10.15541/jim20180320
所属专题: 热电材料与器件; 优秀作者论文集锦; 优秀作者作品欣赏:能源材料
沈家骏, 方腾, 傅铁铮, 忻佳展, 赵新兵, 朱铁军
收稿日期:
2018-07-16
修回日期:
2018-09-03
出版日期:
2019-03-20
网络出版日期:
2019-02-26
作者简介:
沈家骏(1992-), 男, 博士研究生. E-mail: 11626058@zju.edu.cn
基金资助:
SHEN Jia-Jun, FANG Teng, FU Tie-Zheng, XIN Jia-Zhan, ZHAO Xin-Bing, ZHU Tie-Jun
Received:
2018-07-16
Revised:
2018-09-03
Published:
2019-03-20
Online:
2019-02-26
Supported by:
摘要:
随着可再生能源及能源转换技术的快速发展, 热电材料在发电及制冷领域的应用前景受到越来越广泛的关注。发展具有高热电优值材料的重要性日益突出, 如何获得低晶格热导率是热电材料的研究重点之一。本文阐述了热容、声速及弛豫时间对晶格热导率的影响, 介绍了本征低热导率热电材料所具有的典型特征, 如强非谐性、弱化学键、本征共振散射及复杂晶胞结构等, 并分析了通过多尺度声子散射降低已有热电材料晶格热导率的方法, 其中包括点缺陷散射、位错散射、晶界散射、共振散射、电声散射等多种散射机制。此外, 总结了几种预测材料最小晶格热导率的理论模型, 对快速筛选具有低晶格热导率的热电材料具有一定的理论指导意义。最后, 展望了如何获得低热导率热电材料的有效途径。
中图分类号:
沈家骏, 方腾, 傅铁铮, 忻佳展, 赵新兵, 朱铁军. 热电材料中的晶格热导率[J]. 无机材料学报, 2019, 34(3): 260-268.
SHEN Jia-Jun, FANG Teng, FU Tie-Zheng, XIN Jia-Zhan, ZHAO Xin-Bing, ZHU Tie-Jun. Lattice Thermal Conductivity in Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 260-268.
图1 (a) Cu2-xSe化合物的热容与温度关系图[11]和(b) 室温晶格热导率与原胞中原子数关系[12,13,14,15,16]
Fig.1 (a) Temperature dependence of the lattice thermal conductivity for Cu2-xSe[11] and (b) number of atoms in the primitive unit cell versus room temperature lattice thermal conductivity[12,13,14,15,16]
图2 (a)Ba8Ga16Ge30晶体结构示意图, (b)未填充及填充笼式结构的弹簧模型及(c)色散关系[29]
Fig. 2 (a) Schematic diagram of crystal structure for Ba8Ga16Ge30, (b) a simple spring model and (c) the corresponding dispersion relation of filled and unfilled clathrate[29]describing interaction between the host cages with a spring constant K1 and the guest atoms attached to the cages with a spring constant K2
图4 (a)(Nb0.6Ta0.4)0.8Ti0.2FeSb和Nb0.8Ti0.2FeSb的晶格热导率与声子频率的依赖关系和(b)Ta掺杂量与无序散射因子及晶格热导率的关系图[70]
Fig.4 (a) Phonon frequency dependence of spectral lattice thermal conductivity for (Nb0.6Ta0.4)0.8Ti0.2FeSb and Nb0.8Ti0.2FeSb, and (b) relationship between Ta content and lattice thermal conductivity/disorder parameter for (Nb0.6Ta0.4)0.8Ti0.2FeSb[70]
图5 (a) Mg2Si0.5Sb0.5中位错的IFFT图及相应的应力扫描图, (b) Mg2Si1-xSbx及Mg2Si1-zSnz的室温晶格热导率对比图[84]
Fig. 5 (a) Inverse FFT images and strain mapping of dislocations in the Mg2Si0.5Sb0.5, and (b) lattice thermal conductivity comparison between Mg2Si1-xSbx and Mg2Si1-zSnz at room temperature[84]
图6 BiSe晶体结构示意图(a)和Bi2Se3及BiSe的晶格热导率对比图(b)[88]
Fig. 6 (a) Schematic diagram of crystal structure for BiSe and (b) lattice thermal conductivity comparison between Bi2Se3 and BiSe[88]
图7 电声散射示意图(a)和硅样品晶格热导率的实验值与Callaway模型计算值的对比图(b)[93]
Fig. 7 (a) Schematic diagram of electron-phonon scattering and (b) comparison of experimental and calculated lattice thermal conductivities by Callaway Model for the silicon sample[93]
图8 (a)扩散子模型及声子模型的差别示意图和(b)Cahill模型及扩散子模型预测的最小晶格热导率对比图
Fig. 8 (a) Schematic diagram of the difference between diffusion model and phonon model, and (b) comparison of calculated minimum lattice thermal conductivities by Cahill model and diffuson model
[1] | BELL L E.Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457-1461. |
[2] | SNYDER G J, TOBERER E S.Complex thermoelectric materials. Nature Materials, 2008, 7:101-110. |
[3] | XIN J Z, TANG Y L, LIU Y T, et al.Valleytronics in thermoelectric materials. npj Quantum Materials, 2018, 3(1): 9. |
[4] | LI W, ZHENG L L, GE B H, et al. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects. Advanced Materials, 2017, 29(17): 1605887-1-8. |
[5] | BISWAS K, HE J Q, BLUM I D, et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489: 414-418. |
[6] | ZHAO L D, LO S H, ZHANG Y S, et al.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373-377. |
[7] | CHEN Z W, JIAN Z Z, LI W,et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Advanced Materials, 2017, 29(23): 1606768-1-8. |
[8] | KIM S I, LEE K H, MUN H A, et al.Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109-114. |
[9] | CHEN Z W, ZHANG X Y, PEI Y Z. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 2018, 30(17): 1705617-1-12. |
[10] | HE Y, DAY T, ZHANG T S, et al.High thermoelectric performance in non-toxic earth-abundant copper sulfide. Advanced Materials, 2014, 26(23): 3974-3978. |
[11] | LIU H L, SHI X, XU F F, et al.Copper ion liquid-like thermoelectrics. Nature Materials, 2012, 11: 422-425. |
[12] | VINING C B, LASKOW W, HANSON J O, et al.Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. Journal of Applied Physics, 1991, 69(8): 4333-4340. |
[13] | PEI Y Z, LALONDE A, IWANAGA S, et al.High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011, 4(6): 2085-2089. |
[14] | ZEVALKINK A, TOBERER E S, ZEIER W G., et al.Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy & Environmental Science, 2011, 4(2): 510-518. |
[15] | MAY A F, TOBERER E S, SARAMAT A, et al. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x. Physical Review B, 2009, 80(12): 125205-1-12. |
[16] | COX C A, TOBERER E S, LEVCHENKO A A, et al.Structure, heat capacity, and high-temperature thermal properties of Yb14Mn1-xAlxSb11. Chemistry of Materials, 2009, 21(7): 1354-1360. |
[17] | SLACK G A.The thermal conductivity of nonmetallic crystals. Solid State Physics, 1979, 34: 1-71. |
[18] | TOBERER E S, ZEVALKINK A, SNYDER G J.Phonon engineering through crystal chemistry. Journal of Materials Chemistry, 2011, 21(40): 15843-15852. |
[19] | WANG Y, HU Y J, FIRDOSY S A, et al. First-principles calculations of lattice dynamics and thermodynamic properties for Yb14MnSb11. Journal of Applied Physics, 2018, 123(4): 045102-1-10. |
[20] | BROWN S R, KAUZLARICH S M, GASCOIN F, et al.Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chemistry of Materials, 2006, 18(7): 1873-1877. |
[21] | CHEN Z, LI D C, DENG S P, et al.Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal. Physica B: Condensed Matter, 2018, 538: 154-159. |
[22] | YING P J, LI X, WANG Y C, et al. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials. Advanced Functional Materials, 2016, 27(1): 1604145-1-8. |
[23] | LI J Q, LI L F, SONG S H, et al.High thermoelectric performance of GeTe-Ag8GeTe6 eutectic composites. Journal of Alloys and Compounds, 2013, 565: 144-147. |
[24] | FUJIKANE M, KUROSAKI K, MUTA H, et al.Thermoelectric properties of Ag8GeTe6. Journal of Alloys and Compounds, 2005, 396(1): 280-282. |
[25] | HOU Y H, CHANG L S.Optimization on the figure-of-merit of p-type Ba8Ga16Ge30 type-I clathrate grown via the Bridgman method by fine tuning Ga/Ge ratio. Journal of Alloys and Compounds, 2018, 736: 108-114. |
[26] | YAN X L, IKEDA M, ZHANG L, et al.Suppression of vacancies boosts thermoelectric performance in type-I clathrates. Journal of Materials Chemistry A, 2018, 6(4): 1727-1735. |
[27] | BEEKMAN M, VANDERGRAAFF A.High-temperature thermal conductivity of thermoelectric clathrates. Journal of Applied Physics, 2017, 121(20): 205105. |
[28] | GONZALEZ-ROMERO R L, ANTONELLI A. Estimating carrier relaxation times in the Ba8Ga16Ge30 clathrate in the extrinsic regime. Physical Chemistry Chemical Physics, 2017, 19(4): 3010-3018. |
[29] | CHRISTENSEN M, ABRAHAMSEN A B, CHRISTENSEN N B, et al.Avoided crossing of rattler modes in thermoelectric materials. Nature Materials, 2008, 7: 811-815. |
[30] | CALLAWAY J.Model for lattice thermal conductivity at low temperatures. Physical Review, 1959, 113(4): 1046-1051. |
[31] | CHUNG J D, MCGAUGHEY A J H, KAVIANY M. Role of phonon dispersion in lattice thermal conductivity modeling. Journal of Heat Transfer, 2004, 126(3): 376-380. |
[32] | SLACK G A, GALGINAITIS S.Thermal conductivity and phonon scattering by magnetic impurities in CdTe. Physical Review, 1964, 133(1A): A253-A268. |
[33] | HEREMANS J P.Thermoelectric materials: the anharmonicity blacksmith. Nature Physics, 2015, 11: 990-991. |
[34] | QIU W J, XI L L, WEI P, et al.Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. Proceedings of the National Academy of Sciences, 2014, 111(42): 15031-15035. |
[35] | TYAGI K, GAHTORI B, BATHULA S, et al.Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity. Journal of Materials Chemistry A, 2014,2(38): 15829-15835. |
[36] | DELAIRE O, MA J, MARTY K, et al.Giant anharmonic phonon scattering in PbTe. Nature Materials, 2011, 10: 614-619. |
[37] | LEE S, ESFARJANI K, LUO T F, et al.Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 2014, 5: 3525-1-8. |
[38] | MURPHY R M, MURRAY ÉD, FAHY S, et al. Ferroelectric phase transition and the lattice thermal conductivity of Pb1-xGexTe alloys. Physical Review B, 2017, 95(14): 144302-1-8. |
[39] | CHEN Y, HE B, ZHU T J, et al.Thermoelectric properties of non-stoichiometric AgSbTe2 based alloys with a small amount of GeTe addition. Journal of Physics D: Applied Physics, 2012, 45(11): 115302. |
[40] | ZHANG Y, KE X Z, CHEN C F, et al. Thermodynamic properties of PbTe, PbSe,PbS: first-principles study. Physical Review B, 2009, 80(2): 024304-1-12. |
[41] | MILLER A J, SAUNDERS G A, YOGURTCU Y K.Pressure dependences of the elastic constants of PbTe, SnTe and Ge0.08Sn0.92Te. Journal of Physics C: Solid State Physics, 1981, 14(11): 1569-1584. |
[42] | ALEXANDER F Z, VOLKER L D, RALF P S, et al.Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3). Journal of Physics: Condensed Matter, 2016, 28(11): 115401-1-7. |
[43] | RINCÓN C, VALERI-GIL M L, WASIM S M. Room-temperature thermal conductivity and grüneisen parameter of the I-III-VI2 chalcopyrite compounds. Physica Status Solidi (A), 1995, 147(2): 409-415. |
[44] | WANG H F, JIN H, CHU W G, et al.Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method. Journal of Alloys and Compounds, 2010, 499(1): 68-74. |
[45] | BERNSTEIN N, FELDMAN J L, SINGH D J. Calculations of dynamical properties of skutterudites: thermal conductivity, thermal expansivity,atomic mean-square displacement. Physical Review B, 2010, 81(13): 134301-1-11. |
[46] | BHASKAR A, PAI Y H, WU W M, et al.Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe. Ceramics International, 2016,42(1, Part B): 1070-1076. |
[47] | KATRE A, TOGO A, TANAKA I, et al. First principles study of thermal conductivity cross-over in nanostructured zinc-chalcogenides.Journal of Applied Physics, 2015, 117(4): 045102-1-6. |
[48] | NUNES O A C. Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate. Journal of Applied Physics, 2014, 115(23): 233715-1-7. |
[49] | REEBER R R.Thermal expansion of some group IV elements and ZnS. Physica Status Solidi (a), 1975, 32(1): 321-331. |
[50] | QIN L, TEO K L, SHEN Z X, et al. Raman scattering of Ge/Si dot superlattices under hydrostatic pressure. Physical Review B, 2001, 64(7): 075312-1-5. |
[51] | SILPAWILAWAN W, KUROSAKI K, OHISHI Y, et al.FeNbSb p-type half-Heusler compound: beneficial thermomechanical properties and high-temperature stability for thermoelectrics. Journal of Materials Chemistry C, 2017, 5(27): 6677-6681. |
[52] | BOSONI E, SOSSO G C, BERNASCONI M.Grüneisen parameters and thermal conductivity in the phase change compound GeTe. Journal of Computational Electronics,2017, 16(4): 997-1002. |
[53] | LI W, LIN S, GE B, et al. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 2016, 3 (11): 1600196-1-7. |
[54] | CALLAWAY J, VON B, HANS C.Effect of point imperfections on lattice thermal conductivity. Physical Review, 1960, 120(4): 1149-1154. |
[55] | HAO F, QIU P F, TANG Y S, et al.High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy & Environmental Science, 2016, 9(10): 3120-3127. |
[56] | HU L P, ZHU T J, LIU X H, et al.Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Advanced Functional Materials, 2014, 24(33): 5211-5218. |
[57] | PEI Y Z, SHI X Y, LALONDA A, et al.Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66-69. |
[58] | QIN Y T, QIU P F, SHI X, et al.Thermoelectric properties for CuInTe2-xSx(x = 0, 0.05, 0.1, 0.15) solid solution. Journal of Inorganic Materials, 2017, 32(11): 1171-1176. |
[59] | JIANG G Y, HE J, ZHU T J, et al.High performance Mg2(Si,Sn) solid solutions: a point defect chemistry approach to enhancing thermoelectric properties. Advanced Functional Materials, 2014, 24(24): 3776-3781. |
[60] | LIU X H, ZHU T J, WANG H, et al.Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Advanced Energy Materials, 2013, 3(9): 1238-1244. |
[61] | TRIPATHI M N, BHANDARI C M.High-temperature thermoelectric performance of Si-Ge alloys. Journal of Physics: Condensed Matter, 2003, 15(31): 5359-5370. |
[62] | FU C G, ZHU T J, PEI Y Z, et al. High band degeneracy contributes to high thermoelectric performance in p-type half-Heusler compounds. Advanced Energy Materials, 2014, 4(18): 1400600-1-6. |
[63] | YU J J, XIA K Y, ZHAO X B, et al.High performance p-type half-Heusler thermoelectric materials. Journal of Physics D: Applied Physics, 2018, 51(11): 113001. |
[64] | SHEN J J, FU C G, LIU Y T, et al.Enhancing thermoelectric performance of FeNbSb half-Heusler compound by Hf-Ti dual-doping. Energy Storage Materials, 2018, 10: 69-74. |
[65] | ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 2017, 29(14): 1605884-1-26. |
[66] | FU C G, WU H J, LIU Y T, et al. Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering. Advanced Science, 2016, 3(8): 1600035-1-6. |
[67] | ZHU T J, FU C G, XIE H H, et al. High efficiency half-Heusler thermoelectric materials for energy harvesting. Advanced Energy Materials, 2015, 5(19): 1500588-1-7. |
[68] | FU C G, BAI S Q, LIU Y T, et al.Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun., 2015, 6: 8144. |
[69] | XIE H H, WANG H, PEI Y Z, et al.Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials. Advanced Functional Materials, 2013, 23(41): 5123-5130. |
[70] | YU J J, FU C G, LIU Y T, et al. Unique role of refractory ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Advanced Energy Materials, 2018, 8(1): 1701313-1-8. |
[71] | XIA K Y, LIU Y T, ANAND S, et al. Enhanced thermoelectric performance in 18-electron Nb0.8CoSb half-heusler compound with intrinsic Nb vacancies. Advanced Functional Materials, 2018, 28(9): 1705845-1-7. |
[72] | LI W, LIN S Q, ZHANG X Y, et al.Thermoelectric properties of Cu2SnSe4 with intrinsic vacancy. Chemistry of Materials, 2016, 28(17): 6227-6232. |
[73] | KLEMENS P G.The scattering of low-frequency lattice waves by static imperfections. Proceedings of the Physical Society. Section A, 1955, 68(12): 1113-1128. |
[74] | ZHANG S N, HE J, JI X H, et al.Effects of ball-milling atmosphere on the thermoelectric properties of TAGS-85 compounds. Journal of Electronic Materials, 2009, 38(7): 1142-1147. |
[75] | LI Y, MEI D Q, WANG H, et al.Reduced lattice thermal conductivity in nanograined Na-doped PbTe alloys by ball milling and semisolid powder processing. Materials Letters, 2015, 140: 103-106. |
[76] | HONG M, CHEN Z G, ZOU J. Fundamental and progress of Bi2Te3-based thermoelectric materials. Chinese Physics B, 2018, 27(4): 048403-1-46. |
[77] | XIE J, OHISHI Y, ICHIKAWA S, et al. Naturally decorated dislocations capable of enhancing multiple-phonon scattering in Si-based thermoelectric composites. Journal of Applied Physics, 2018, 123(11): 115114-1-8. |
[78] | YU Y, HE D S, ZHANG S Y, et al.Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering. Nano Energy, 2017, 37: 203-213. |
[79] | XIE W J, HE J, KANG H J, et al.Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. Nano Letters, 2010, 10(9): 3283-3289. |
[80] | YANG X Y, WU J H, REN D D, et al.Microstructure and thermoelectric properties of p-type Si80Ge20B0.6-SiC nanocomposite. Journal of Inorganic Materials, 2016, 31(9): 997-1003. |
[81] | YU C, XIE H H, FU C G, et al.High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. Journal of Materials Research, 2012, 27(19): 2457-2465. |
[82] | HU L P, WU H J, ZHU T J, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Advanced Energy Materials, 2015, 5(17): 1500411-1-13. |
[83] | HE J Q, GIRARD S N, KANATZIDIS M G, et al.Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials. Advanced Functional Materials, 2010, 20(5): 764-772. |
[84] | XIN J Z, WU H J, LIU X H, et al.Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1-xSbx thermoelectric materials. Nano Energy, 2017, 34: 428-436. |
[85] | SHI X, BAI S Q, XI L L, et al.Realization of high thermoelectric performance in n-type partially filled skutterudites. Journal of Materials Research, 2011, 26(15): 1745-1754. |
[86] | KEPPENS V, MANDRUS D, SALES B C, et al.Localized vibrational modes in metallic solids. Nature, 1998, 395: 876-878. |
[87] | DUAN B, YANG J, SALVADOR J R, et al.Electronegative guests in CoSb3. Energy & Environmental Science, 2016, 9(6): 2090-2098. |
[88] | SAMANTA M, PAL K, PAL P, et al.Localized vibrations of bi bilayer leading to ultralow lattice thermal conductivity and high thermoelectric performance in weak topological insulator n-type BiSe. Journal of the American Chemical Society, 2018, 140(17): 5866-5872. |
[89] | UHER C, YANG J, HU S, et al.Transport properties of pure and doped MNiSn (M=Zr, Hf). Physical Review B, 1999, 59(13): 8615-8621. |
[90] | LI J F, LIU W S, ZHAO L D, et al.High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2(4): 152-158. |
[91] | FANG T, ZHAO X B, ZHU T J.Band Structures and transport properties of high-performance half-heusler thermoelectric materials by first principles. Materials, 2018, 11(5): 847. |
[92] | TANG Y L, LI X S, MARTIN L H J, et al. Impact of Ni content on the thermoelectric properties of half-Heusler TiNiSn. Energy & Environmental Science, 2018, 11(2): 311-320. |
[93] | ZHU T J, YU G T, XU J, et al.The role of electron-phonon interaction in heavily doped fine-grained bulk silicons as thermoelectric materials. Advanced Electronic Materials, 2016, 2(8): 1600171. |
[94] | ABELES B.Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Physical Review, 1963, 131(5): 1906-1911. |
[95] | CLARKE D R.Materials selection guidelines for low thermal conductivity thermal barrier coatings.Surface and Coatings Technology, 2003, 163: 67-74. |
[96] | CAHILL D G, POHL R O.Heat flow and lattice vibrations in glasses. Solid State Communications, 1989, 70(10): 927-930. |
[97] | CAHILL D G, WATSON S K, POHL R O.Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 1992, 46(10): 6131-6140. |
[98] | ALLEN P B, DU X Q, MIHALY L, et al.Thermal conductiity of insulating Bi2Sr2YCu2O8 and superconducting Bi2Sr2CaCu2O8: failure of the phonon-gas picture. Physical Rview B, 1994, 49(13): 9073-9079. |
[99] | FELDMAN J L, ALLEN P B, BICKHAM S R.Numerical study of low-frequency vibrations in amorphous silicon. Physical Review B, 1999, 59(5): 3551-3559. |
[100] | AGNE M T, HANUS R, SNYDER G J.Minimum thermal conductivity in the context of diffuson-mediated thermal transport.Energy & Environmental Science, 2018, 11(3): 609-616. |
[101] | POHL R O.Lattice vibrations of glasses. Journal of Non-Crystalline Solids, 2006, 352(32): 3363-3367. |
[102] | FU C G, ZHU T J, LIU Y T, et al.Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT>1. Energy & Environmental Science, 2015, 8(1): 216-220. |
[103] | WEI P, YANG J, GUO L, et al.Minimum thermal conductivity in weak topological insulators with bismuth-based stack structure. Advanced Functional Materials, 2016, 26(29): 5360-5367. |
[104] | RASCHE B, ISAEVA A, RUCK M, et al.Stacked topological insulator built from bismuth-based graphene sheet analogues. Nature Materials, 2013, 12(5): 422-425. |
[105] | PAULY C, RASCHE B, KOEPERNIK K, et al.Subnanometre-wide electron channels protected by topology. Nature Physics, 2015, 11(4): 338-343. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[8] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[9] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[10] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[11] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[12] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[13] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[14] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||