无机材料学报 ›› 2019, Vol. 34 ›› Issue (3): 236-246.DOI: 10.15541/jim20180321
所属专题: 热电材料与器件
李鑫, 席丽丽, 杨炯
收稿日期:
2018-07-16
修回日期:
2018-10-02
出版日期:
2019-03-20
网络出版日期:
2019-02-26
作者简介:
李 鑫(1993-), 女, 博士研究生. E-mail: xinli@t.shu.edu.cn
基金资助:
LI Xin, XI Li-Li, YANG Jiong
Received:
2018-07-16
Revised:
2018-10-02
Published:
2019-03-20
Online:
2019-02-26
Supported by:
摘要:
热电材料是一种新型能量转换材料, 在温差发电或通电制冷等领域具有广泛应用。热电优值ZT值是衡量热电材料能量转换效率的关键参数, ZT值要求热电材料具有优异的电输运性能及较低的热导率。传统第一性原理热电材料研究往往关注少量样本下的电热输运性质理解与优化, 很难得到系统性的规律, 也不利于新体系的设计优化。材料基因组计划力求通过大数据、高通量手段去加速材料设计与发现, 具有广阔的发展前景。在热电材料研究领域, 第一性原理高通量计算也将在新材料预测与性能优化等方面起到越来越重要的作用。另一方面, 高通量研究也带来了新的挑战, 譬如电热输运性质的高通量算法发展、大数据分析手段等等, 这些方面的问题决定了高通量方法在材料应用中的效率与准确性。本文综述了热电材料中现有的电热输运性质高通量计算方法, 介绍了这些方法具体的应用案例, 并对高通量与热电材料结合的未来发展趋势进行了展望。
中图分类号:
李鑫, 席丽丽, 杨炯. 热电材料的第一性原理高通量研究[J]. 无机材料学报, 2019, 34(3): 236-246.
LI Xin, XI Li-Li, YANG Jiong. First Principles High-throughput Research on Thermoelectric Materials: a Review[J]. Journal of Inorganic Materials, 2019, 34(3): 236-246.
图5 硫族类金刚石化合物的功率因子分布图(a)和带空位的三元硫族类金刚石结构图(b)[20]
Fig. 5 Power factor of chalcogenides with diamond-like structures (a) and vacancy-containing ternary chalcogenides (b)[20]
图8 半哈斯勒合金热导率性质三种预测结果[16]
Fig. 8 Three prediction models of the κL in half-Heusler compounds[16](a) Frequency densities of the estimators of thermal conductivity at 300 Kκtransfand κforest;and (b) distribution of κanhover the 75 thermodynamically stable half-Heuslers
[1] | SEEBECK T J. On the magnetic polarization of metals and minerals by temperature differences. Annals of Physics, 1826, 82(3): 253-286. |
[2] | PELTIER J C A. New experiments on the heat effects of electric currents. Annals of Chemistry and Physics, 1834, 56: 371-386. |
[3] | ZHANG Q, LIAO J, TANG Y, et al.Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy & Environmental Science, 2017, 10(4): 956-963. |
[4] | BULMAN G E, SIIVOLA E, SHEN B, et al.Large external delta t and cooling power densities in thin-film Bi2Te3-superlattice thermoelectric cooling devices. Applied Physics Letters, 2006, 89(12): 122117-1-3. |
[5] | SHAKOURI A, ZHANG Y.On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators. IEEE Transactions on Components and Packaging Technologies, 2005, 28(1): 65-69. |
[6] | WANG W, JIA F, HUANG Q, et al.A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectronic Engineering, 2005, 77(3/4): 223-229. |
[7] | LI JING-FENG.Macrofabrication technology of three-dimensional microdevices and their MEMS applications. Journal of Inorganic Materials,2002, 17(4):657-664. |
[8] | HAUTIE G, JAIN A, CHEN H, et al.Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. Journal of Materials Chemistry, 2011, 21(43): 17147-17153. |
[9] | DE JONG M, CHEN W, ANGSTEN T, et al.Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data, 2015, 2: 150009-1-13. |
[10] | TAYLOR R H, CURTAROLO S, HART G L W. Guiding the experimental discovery of magnesium alloys. Physical Review B, 2011, 84(8): 084101-1-17. |
[11] | HAUTIER G, FISCHER C, EHRLACHER V, et al.Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem., 2011, 50(2): 656-663. |
[12] | CHEN W, POHLS JAN-HENDRIK, HAUTIER G, et al.Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment. Journal of Materials Chemistry C, 2016, 4(20): 4414-4426. |
[13] | TOHER C, PLATA J J, LEVY O, et al. High-throughput computational screening of thermal conductivity, debye temperature,gruneisen parameter using a quasiharmonic debye model. Physical Review B, 2014, 90(17): 174107-1-14. |
[14] | BLANCO M, FRANCISCO E, LUANA V.Gibbs: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic debye model. Computer Physics Communications, 2004, 158(1): 57-72. |
[15] | WANG S, WANG Z, SETYAWAN W, et al.Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Physical Review X, 2011, 1(2): 021012-1-8. |
[16] | CARRETE J, LI W, MINGO N, et al.Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Physical Review X, 2014, 4(1): 011019-1-9. |
[17] | GOLDSMID H, DOUGLAS R.The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954, 5(11): 386-390. |
[18] | CHASMAR R, STRATTON R.The thermoelectric figure of merit and its relation to thermoelectric generators. International Journal of Electronics, 1959, 7(1): 52-72. |
[19] | SLACK G A.Nonmetallic crystals with high thermal conductivity. Journal of Physics & Chemistry of Solids, 1973, 34(2): 321-335. |
[20] | XI L, PAN S, LI X, et al.Discovery of high performance thermoelectric chalcogenides through reliable high throughput material screening. Journal of the American Chemical Society, 2018, 140(34): 10785-10793. |
[21] | YANG J, XI L, QIU W, et al.On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. npj Computational Materials, 2016, 2:15015-1-17. |
[22] | GIBBS Z M, RICCI F, LI G, et al.Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Computational Materials, 2017, 3(1): 8-1-7. |
[23] | CHEN LI-DONG, XIONG ZHEN, BAI SHENG-QIANG.Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials,2010, 25(6):561-568. |
[24] | YAN J, GORAI P, ORTIZ B, et al.Material descriptors for predicting thermoelectric performance. Energy & Environmental Science, 2015, 8(3): 983-994. |
[25] | ANDERSON ORSON L.A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909-917. |
[26] | HILL RICHARD.The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 1952,65(5): 349-354. |
[27] | JIA T, CHEN G, ZHANG Y. Lattice thermal conductivity evaluated using elastic properties. Physical Review B, 2017, 95(15): 155206- 1-6. |
[28] | CLARKE D R.Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 2003, 163: 67-74. |
[29] | CAHILL D G, POHL R.Lattice vibrations and heat transport in crystals and glasses. Annual Review of Physical Chemistry, 1988, 39(1): 93-121. |
[30] | CAHILL D G, BRAUN P V, CHEN G, et al.Nanoscale thermal transport. II.2003-2012. Applied Physics Reviews, 2014, 1(1): 011305-1-45. |
[31] | HAUKE J, KOSSOWSKI T.Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones Geographicae, 2011, 30(2): 87-93. |
[32] | YANG J, LI H, WU T, et al.Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Advanced Functional Materials, 2008, 18(19):2880-2888. |
[33] | YING P, LI X, WANG Y, et al.Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α- MgAgSb thermoelectric materials. Advanced Functional Materials, 2017, 27(1): 1604145-1-8. |
[34] | LI W, LIN S, GE B, et al.Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Advanced Science, 2016, 3(11): 1600196-1-7. |
[35] | RICCI F, CHEN W, AYDEMIR U, et al.An ab initio electronic transport database for inorganic materials. Sci. Data, 2017, 4:170085-1-13. |
[36] | ZHU H, HAUTIER G, AYDEMIR U, et al.Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. Journal of Materials Chemistry C, 2015, 3(40): 10554-10565. |
[37] | AYDEMIR U, P HLS J, ZHU H, et al.YCuTe2: a member of a new class of thermoelectric materials with cute4-based layered structure. Journal of Materials Chemistry A, 2016, 4(7): 2461-2472. |
[38] | BERA C, SOULIER M, NAVONE C, et al.Thermoelectric properties of nanostructured Si1-xGex and potential for further improvement. Journal of Applied Physics, 2010, 108(12): 124306-1-8. |
[39] | ZIOLKOWSKI P, WAMBACH M, LUDWIG A, et al.Application of high-throughput seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Combinatorial Science, 2018, 20(1): 1-18. |
[40] | CARRETE J, MINGO N, WANG S D, et al.Nanograined half-heusler semiconductors as advanced thermoelectrics: an ab initio high-throughput statistical study. Advanced Functional Materials, 2014, 24(47): 7427-7432. |
[41] | LIAW A, WIENER M.Classification and regression by randomforest. R News, 2002, 23(23): 18-22. |
[42] | JOLLIFFE I T.Principal component analysis. Berlin, Heidelberg: Springer, 2011: 1094-1096. |
[43] | KRESSE G, FURTHMULLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186. |
[44] | ONG S P, CHOLIA S, JAIN A, et al.The materials application programming interface (API): a simple, flexible and efficient API for materials data based on representational state transfer (rest) principles. Computational Materials Science, 2015, 97: 209-215. |
[45] | ONG S P, RICHARDS W D, JAIN A, et al.Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Computational Materials Science, 2013, 68: 314-319. |
[46] | JAIN A, ONG S P, HAUTIER G, et al.The materials project: a materials genome approach to accelerating materials innovation. APL Materials, 2013, 1(1): 011002-1-11. |
[47] | ZHOU F, COCOCCIONI M, MARIANETTI C A, et al.First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Physical Review B, 2004, 70(23): 235021- 1-8. |
[48] | WANG L, MAXISCH T, CEDER G.A first-principles approach to studying the thermal stability of oxide cathode materials. Chemistry of Materials, 2007, 19(3): 543-552. |
[49] | ONG S P, JAIN A, HAUTIER G, et al.Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochemistry Communications, 2010, 12(3): 427-430. |
[50] | ADAMS S, RAO R P.High power lithium ion battery materials by computational design. Physica Status Solidi a-Applications and Materials Science, 2011, 208(8): 1746-1753. |
[51] | GIANNOZZI P, BARONI S, BONINI N, et al.Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics-Condensed Matter, 2009, 21(39): 395502-1-19. |
[52] | ISAYEV O, OSES C, TOHER C, et al.Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun., 2017, 8: 15679-1-12. |
[53] | SUPKA A R, LYONS T E, LIYANAGE L, et al.AFLOWπ: a minimalist approach to high-throughput ab initio calculations including the generation of tight-binding hamiltonians. Computational Materials Science, 2017, 136: 76-84. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 张守超, 陈洪雨, 刘洪飞, 杨羽, 李欣, 刘德峰. 6H-SiC中子辐照肿胀高温回复及光学特性研究[J]. 无机材料学报, 2023, 38(6): 678-686. |
[6] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[7] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[8] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[9] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[10] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[11] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[12] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[15] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||