无机材料学报 ›› 2019, Vol. 34 ›› Issue (1): 37-48.DOI: 10.15541/jim20180176
所属专题: MAX相和MXene材料; 钙钛矿材料; 光伏材料; 2019~2020年度优秀作者作品欣赏:功能材料
章楼文1, 沈少立2, 李露颖2, 张智1, 刘逆霜1, 高义华1,2
收稿日期:
2018-04-24
修回日期:
2018-07-13
出版日期:
2019-01-21
网络出版日期:
2018-12-17
作者简介:
章楼文(1991-),男,博士研究生. E-mail: louwen_zhang@qq.com
基金资助:
ZHANG Lou-Wen1, SHEN Shao-Li2, LI Lu-Ying2, ZHANG Zhi1, LIU Ni-Shuang1, GAO Yi-Hua1,2
Received:
2018-04-24
Revised:
2018-07-13
Published:
2019-01-21
Online:
2018-12-17
About author:
ZHANG Lou-Wen. E-mail: louwen_zhang@qq.com
摘要:
由于优异的光电性能与环境稳定性, 全无机铯铅卤化物CsPbX3(X=Cl, Br, I)钙钛矿材料自2015年起逐渐成为光电领域的研究热点, 在诸多电子、光电子器件的应用研究中取得了突破性进展, 受到了科学界的广泛关注。本综述结合铯铅卤化物钙钛矿型平面异质结LED的最新研究进展, 对器件的结构及其工作原理进行扼要的介绍, 并着重从提高LED器件发光性能和工作稳定性方面进行优化策略的归类与总结, 最后就稳定高效的无机钙钛矿型平面异质结LED的发展趋势进行了展望。
中图分类号:
章楼文, 沈少立, 李露颖, 张智, 刘逆霜, 高义华. 铯铅卤化物钙钛矿型平面异质结LED的应用与发展[J]. 无机材料学报, 2019, 34(1): 37-48.
ZHANG Lou-Wen, SHEN Shao-Li, LI Lu-Ying, ZHANG Zhi, LIU Ni-Shuang, GAO Yi-Hua. Application and Development of Cesium Lead Halide Perovskite Based Planar Heterojunction LEDs[J]. Journal of Inorganic Materials, 2019, 34(1): 37-48.
图2 钙钛矿型平面异质结LED的器件结构示意图(a)~(b)和工作机理示意图(c)
Fig. 2 Schematic diagram of the device structures (a, b) and working mechanism (c) for perovskite based planar heterojunction LEDs
图3 (a)器件的结构示意图; (b)器件横截面的TEM照片, 比例尺: 50 nm; (c)器件的能带示意图; (d)器件在外加电压为5 V时的EL光谱(实线)和量子点分散在己烷中的PL(光致发光)光谱(虚线)[58]
Fig. 3 (a) Schematic diagram of device structure; (b) Cross-sectional TEM image. Scale bar, 50 nm; (c) Flat-band energy level diagram; (d) The EL spectra (straight line) of devices for CsPb(Cl/Br)3, CsPbBr3 and CsPb(Br/I)3 under applied voltage of 5.5 V, and the photoluminescence (PL) spectra (dashed line) of QDs dispersed in hexane[58]
图4 (a)器件的结构示意图和横断面的TEM照片(比例尺: 50 nm); (b)两次净化处理后CsPbBr3的QLEDs的EL光谱(实线)和PL光谱(虚线), 插图: 外加电压为5 V时的工作器件照片; (c)器件的EQE随发光强度的变化曲线[59]
Fig. 4 (a) Schematic illustration of device structure and a cross-sectional TEM image (scale bar: 50 nm); (b) Normalized EL spectra (solid lines) and PL spectra (dashed lines) of CsPbBr3 QLEDs with two purifying cycles. Inset in (b): The photograph of a working device at an applied voltage of 5 V; (c) EQE of these devices for QDs with different purifying cycles as a function of luminance[59]
图5 (a)CsPbBr3钙钛矿型LED的结构示意图; (b)CE和EQE随电压变化的特征曲线[68]; (c)无处理和(d)氯苯处理后的CsPbBr3薄膜表面形貌及其LED表面发光照片[69]
Fig. 5 (a) Structural representation of CsPbBr3 based LEDs; (b) Current efficiency-voltage (CE-V), and EQE-voltage (EQE-V) characteristic curves[68]; The surface morphology of CsPbBr3 film and surface luminous photo of LED (c) without treatment and (d) with chlorobenzene treatment[69]
图6 (a)不同ETL和HTL材料构筑器件的EQE和CE与电压的变化关系[77]; (b)不同PEG和CsPbBr3(CsBr和PbBr2摩尔比为1.4:1)质量比构筑的LED器件的EQE-V曲线[78]; (c)器件的结构示意图和横断面的TEM照片; (d)有无Ag纳米棒修饰的LED器件的EQE[79]
Fig. 6 (a) EQE and CE as a function of voltage among devices fabricated with different ETL and HTL materials[77]; (b) EQE-V curves for the LEDs with different PEG:CsPbBr3 (CsBr:PbBr2 molar ratio of 1.4:1) weight ratios[78]; (c) TEM image of cross section of device and corresponding schematic diagram of device structure; (d) EQE for the devices with and without Ag rod[79]
图7 (a)LED器件各组分的能带示意图; (b)有无PFI界面修饰层器件的EQE和CE与电流密度的变化关系曲线[85]; (c)器件的结构示意图; (d)不同组分构成的器件的CE和EQE随电流密度的变化曲线[51]
Fig. 7 (a) Overall energy band diagram of the LED structure; (b) EQE and CE vs current density of devices with or without PFI interface modifier[85]; (c) Schematic diagram of device structure; (d) CE and EQE of devices with and without PVP buffer layer, with and without CH3NH3Br (MABr) additive[51]
图8 (a)器件的结构示意图; (b)器件的EQE随亮度的变化[90]; (c)能带示意图; (d)EQE随电压的变化[91]
Fig. 8 (a) Schematic illustration of device structure; (b) EQE of the devices as a function of luminance[90]; (c) Band alignment of each functional layer; (d) EQE of the devices as a function of driving voltage[91]
图9 (a) LED器件的能带示意图; (b)发光效率与电压、EQE与电压的变化关系曲线[99]; (c)溶液法制备的LED的结构示意图; (d) EQE、CE和发光效率随电压的变化曲线[102]
Fig. 9 (a) Simplified energy band alignment of the LED; (b) Luminous efficiency and EQE versus voltage of the LED[99]; (c) Schematic illustration of solution-processed perovskite LED; (d) EQE, CE, and power efficiency versus voltage of the LED[102]
[1] | KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
[2] | IM J H, LEE C R, LEE J W, et al.6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088-4093. |
[3] | LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643-647. |
[4] | BURSCHKA J, PELLET N, MOON S, et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316-319. |
[5] | LIU M, JOHNSTON M B, SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395-398. |
[6] | GRÄTZEL M. The light and shade of perovskite solar cells. Nat. Mater., 2014, 13(9): 838-842. |
[7] | ZHOU H, CHEN Q, LI G, et al.Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542-546. |
[8] | NIE W, TSAI H, ASADPOUR R, et al.High-efficiency solution- processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522-525. |
[9] | YANG W S, NOH J H, JEON N J, et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234-1237. |
[10] | YANG W S, PARK B W, JUNG E H, et al.Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376-1379. |
[11] | VELDHUIS S A, BOIX P P, YANTARA N, et al.Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804-6834. |
[12] | TAN Z K, MOGHADDAM R S, LAI M L, et al.Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9: 687-692. |
[13] | LI G, TAN Z K, DI D, et al.Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Letters, 2015, 15: 2640-2644. |
[14] | JARAMILLOQUINTERO O A, SANCHEZ R S, RINCON M, et al.Bright visible-infrared light emitting diodes based on hybrid halide perovskite with spiro-OMeTAD as a hole-injecting layer. Journal of Physical Chemistry Letters, 2015, 6: 1883-1890. |
[15] | XING J, YAN F, ZHAO Y, et al.High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 2016, 10: 6623-6630. |
[16] | WANG J, WANG N, JIN Y, et al.Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Advanced Materials, 2015, 27(16): 2311-2316. |
[17] | CHO H, JEONG S H, PARK M H, et al.Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222-1225. |
[18] | DOU L, WONG A B, YU Y, et al.Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518-1521. |
[19] | SADHANALA A, AHMAD S, ZHAO B, et al.Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Letters, 2015, 15: 6095-6101. |
[20] | KIM Y H, CHO H, HEO J H, et al.Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Advanced Materials, 2015, 27(7): 1248-1254. |
[21] | HOYE R L Z, CHUA M R, MUSSELMAN K P, et al. Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors. Advanced Materials, 2015, 27(8): 1414-1419. |
[22] | YU J C, KIM D B, BAEK G, et al.High-performance planar perovskite optoelectronic devices: a morphological and interfacial control by polar solvent treatment. Advanced Materials, 2015, 27(23): 3492-3500. |
[23] | YUAN M, QUAN L N, COMIN R, et al.Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872-877. |
[24] | WANG N, CHENG L, GE R, et al.Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016, 10: 699-704. |
[25] | XIAO Z, KERNER R A, ZHAO L, et al.Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics, 2017, 11: 108-115. |
[26] | LIAO Q, HU K, ZHANG H, et al.Perovskite microdisk microlasers self-assembled from solution. Advanced Materials, 2015, 27(22): 3405-3410. |
[27] | SALIBA M, WOOD S M, PATEL J B, et al.Structured organic- inorganic perovskite toward a distributed feedback laser. Advanced Materials, 2016, 28(5): 923-929. |
[28] | AHMADI M, WU T, HU B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Advanced Materials, 2017, 29(41): 1605242-1-24. |
[29] | DONG R, FANG Y, CHAE J, et al.High-gain and low-driving- voltage photodetectors based on organolead triiodide perovskites. Advanced Materials, 2015, 27(11): 1912-1918. |
[30] | LIN Q, ARMIN A, BURN P L, et al.Filterless narrowband visible photodetectors. Nature Photonics, 2015, 9(10): 687-694. |
[31] | CHEN H W, SAKAI N, JENA A K, et al.A switchable high-sensitivity photodetecting and photovoltaic device with perovskite absorber. Journal of Physical Chemistry Letters, 2015, 6(9): 1773-1779. |
[32] | SAIDAMINOV M I, VALERIO A, RICCARDO C, et al. Planar- integrated single-crystalline perovskite photodetectors. Nature Communication, 2015, 6: 8724-1-7. |
[33] | MACULAN G, SHEIKH A D, ABDELHADY A L, et al.CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. Journal of Physical Chemistry Letters, 2015, 6(19): 3781-3786. |
[34] | YAN K, PENG M, YU X, et al.High-performance perovskite memristor based on methyl ammonium lead halides. Journal of Materials Chemistry C, 2016, 4(7): 1375-1381. |
[35] | GU C, LEE J S.Flexible hybrid organic-inorganic perovskite memory. ACS Nano, 2016, 10(5): 5413-5418. |
[36] | KULBAK M, GUPTA S, KEDEM N, et al.Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7(1): 167-172. |
[37] | KULBAK M, CAHEN D, HODES G.How important is the organic part of lead halide perovskite photovoltaic cells? efficient CsPbBr3 cells. Journal of Physical Chemistry Letters, 2015, 6(13): 2452-2456. |
[38] | PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692-3696. |
[39] | WU Y, WEI Y, HUANG Y, et al.Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Research, 2017, 10(5): 1584-1594. |
[40] | LIU D, LIN Q, ZANG Z, et al.Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Applied Materials & Interfaces, 2017, 9: 6171-6176. |
[41] | HUO C, LIU X, SONG X, et al.Field-effect transistors based on Van-Der-Waals-grown and dry-transferred all-inorganic perovskite ultrathin platelets. Journal of Physical Chemistry Letters, 2017, 8: 4785-4792. |
[42] | CHANG X, LI W, ZHU L, et al.Carbon-based CsPbBr3 perovskite solar cells: all-ambient processes and high thermal stability. ACS Applied Materials & Interfaces, 2016, 8: 33649-33655. |
[43] | PANIGRAHI S, JANA S, CALMEIRO T, et al.Imaging the anomalous charge distribution inside CsPbBr3 perovskite quantum dots sensitized solar cells. ACS Nano, 2017, 11: 10214-10221. |
[44] | CHEN C, LIN H, CHIANG K, et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Advanced Materials, 2017, 29(12): 1605290-1-7. |
[45] | ZENG Q S, ZHANG X Y, FENG X L, et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393-1-9. |
[46] | LI X, YU D, CHEN J, et al.Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015-2023. |
[47] | XUE J, GU Y, SHAN Q, et al.Constructing Mie-scattering porous interface-fused perovskite films to synergistically boost light harvesting and carrier transport. Angewandte Chemie International Edition, 2017, 56(19): 5232-5236. |
[48] | YANG B, ZHANG F, CHEN J, et al. Ultrasensitive and fast all-inorganic perovskite-based photodetector via fast carrier diffusion. Advanced Materials, 2017, 29(40): 1703758-1-8. |
[49] | YANG T, ZHENG Y, DU Z, et al.Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano, 2018, 12(2): 1611-1617. |
[50] | HUANG C Y, ZOU C, MAO C, et al.CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics, 2017, 4(9): 2281-2289. |
[51] | ZHANG L, YANG X, JIANG Q, et al.Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communication, 2017, 8: 15640. |
[52] | CHO H, KIM Y H, WOLF C, et al. Improving the stability of metal halide perovskite materials and light-emitting diodes. Advanced Materials, 2018: 1704587-1-24. |
[53] | LI X, CAO F, YU D, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 2017, 13(9): 1603996-1-24. |
[54] | HE X, QIU Y, YANG S. Fully-inorganic trihalide perovskite nanocrystals: a new research frontier of optoelectronic materials. Advanced Materials, 2017, 29(32): 1700775-1-27. |
[55] | LI J, SHAN X, BADE S G R, et al. Single-layer halide perovskite light-emitting diodes with sub-band gap turn-on voltage and high brightness. Journal of Physical Chemistry Letters, 2016, 7(20): 4059-4066. |
[56] | LY K T, CHENCHENG R W, LIN H W, et al.Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nature Photonics, 2017, 11: 63-68. |
[57] | SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al.Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7(1): 13-23. |
[58] | SONG J, LI J, LI X, et al.Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials, 2015, 27(44): 7162-7167. |
[59] | LI J, XU L, WANG T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials, 2017, 29(5): 1603885-1-9. |
[60] | PAN J, QUAN L N, ZHAO Y, et al.Highly efficient perovskite- quantum-dot light-emitting diodes by surface engineering. Advanced Materials, 2016, 28(39): 8718-8725. |
[61] | TAN Y, ZOU Y, WU L, et al.Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as ligand for efficient light emitting diodes. ACS Applied Materials & Interfaces, 2018, 10(4): 3784-3792. |
[62] | QIN C, MATSUSHIMA T, SANDANAYAKA A S D, et al. Centrifugal-coated quasi-two-dimensional perovskite CsPb2Br5 films for efficient and stable light-emitting diodes. Journal of Physical Chemistry Letters, 2017, 47(21): 5415-5421. |
[63] | CHIBA T, HOSHI K, PU Y J, et al.High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Applied Materials & Interfaces, 2017, 9: 18054-18060. |
[64] | ZOU C, HUANG C Y, SANEHIRA E M, et al. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes. Nanotechnology, 2017, 28(45): 455201-1-7. |
[65] | XU J, HUANG W, LI P, et al. Imbedded nanocrystals of CsPbBr3 in Cs4PbBr6: kinetics, enhanced oscillator strength,application in light-emitting diodes. Advanced Materials, 2017, 29(43): 1703703-1-10. |
[66] | LE Q V, PARK M, SOHN W, et al.Investigation of energy levels and crystal structures of cesium lead halides and their application in full-color light-emitting diodes. Advanced Electronic Materials, 2017, 3(1): 1600448. |
[67] | SUH Y H, KIM T, CHOI J W, et al.High-performance CsPbX3 perovskite quantum dot light emitting devices via solid-state ligand exchange. ACS Applied Nano Materials, 2018, 1(2): 488-496. |
[68] | WANG Z, LUO Z, ZHAO C, et al.Efficient and stable pure green all-inorganic perovskite CsPbBr3 light-emitting diodes with a solution-processed NiOx interlayer. Journal of Physical Chemistry C, 2017, 121: 28132-28138. |
[69] | ZHANG X, WANG W, XU B, et al.Thin film perovskite light-emitting diode based on CsPbBr3, powders and interfacial engineering. Nano Energy, 2017, 37: 40-45. |
[70] | HU Y, WANG Q, SHI Y L, et al.Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. Journal of Materials Chemistry C, 2017, 5(32): 8144-8149. |
[71] | CHO H, WOLF C, KIM J S, et al. High-efficiency solution- processed inorganic metal halide perovskite light-emitting diodes. Advanced Materials, 2017, 29(31): 1700579-1-8. |
[72] | YANTARA N, BHAUMIK S, YAN F, et al.Inorganic halide perovskites for efficient light-emitting diodes. Journal of Physical Chemistry Letters, 2015, 6(21): 4360-4364. |
[73] | YAN F N, WEI J N, JAMALUDIN N F, et al.Enhanced coverage of all-inorganic perovskite CsPbBr3 through sequential deposition for green light-emitting diodes. Energy Technology, 2017, 5: 1859-1865. |
[74] | YAO E P, YANG Z, MENG L, et al. High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites. Advanced Materials, 2017, 29(23): 1606859-1-7. |
[75] | NG Y F, JAMALUDIN N F, YANTARA N, et al.Rapid crystallization of all-inorganic CsPbBr3 perovskite for high-brightness light-emitting diodes. ACS Omega, 2017, 2(6): 2757-2764. |
[76] | JIN F, ZHAO B, CHU B, et al.Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes. Journal of Materials Chemistry C, 2018, 6: 1573-1578. |
[77] | LING Y, TIAN Y, WANG X, et al.Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Advanced Materials, 2016, 28: 8983-8989. |
[78] | SONG L, GUO X, HU Y, et al.Efficient inorganic perovskite light-emitting diodes with polyethylene glycol passivated ultrathin CsPbBr3 films. Journal of Physical Chemistry Letters, 2017, 8: 4148-4154. |
[79] | ZHANG X, XU B, WANG W, et al.Plasmonic perovskite light-emitting diodes based on Ag-CsPbBr3 system. ACS Applied Materials & Interfaces, 2017, 9(5): 4926-4931. |
[80] | YU J C, LEE A Y, KIM D B, et al.Enhancing the performance and stability of perovskite nanocrystal light-emitting diodes with a polymer matrix. Advanced Materials Technologies, 2017, 2(6): 1700003. |
[81] | YU F X, ZHANG Y, XIONG Z Y, et al.Full coverage all-inorganic cesium lead halide perovskite film for high-efficiency light-emitting diodes assisted by 1,3,5-tri(m-pyrid-3-yl-phenyl) benzene. Organic Electronics, 2017, 50: 480-484. |
[82] | WU C, ZOU Y, WU T, et al. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment. Advanced Functional Materials, 2017, 27(28): 1700338-1-7. |
[83] | NG Y F, KULKARNI S A, PARIDA S, et al.Highly efficient Cs-based perovskite light-emitting diodes enabled by energy funnelling. Chemical Communications, 2017, 53(88): 12004-12007. |
[84] | ZHANG X, XU B, ZHANG J, et al.All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2Br5 composites. Advanced Functional Materials, 2016, 26: 4595-4600. |
[85] | ZHANG X, LIN H, HUANG H, et al.Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated lonomer. Nano Letters, 2016, 16(2): 1415-1420. |
[86] | ZHANG X, CAO W, WANG W, et al.Efficient light-emitting diodes based on green perovskite nanocrystals with mixed-metal cations. Nano Energy, 2016, 30: 511-516. |
[87] | MIR W J, JAGADEESWARARAO M, DAS S, et al.Colloidal Mn-doped cesium lead halide perovskite nanoplatelets. ACS Energy Letters, 2017, 2: 537-543. |
[88] | SHAI X, ZUO L, SUN P, et al.Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy, 2017, 36: 213-222. |
[89] | BEGUM R, PARIDA M R, ABDELHADY A L, et al.Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. Journal of the American Chemical Society, 2017, 139: 731-737. |
[90] | ZOU S, LIU Y, LI J, et al.Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. Journal of the American Chemical Society, 2017, 139: 11443-11450. |
[91] | YAO J, GE J, HAN B N, et al.Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. Journal of the American Chemical Society, 2018, 140(10): 3626-3634. |
[92] | JELLICOE T C, RICHTER J M, GLASS H F J, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society, 2016, 138(9): 2941-2944. |
[93] | CHEN L J, LEE C R, CHUANG Y J, et al.Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. Journal of Physical Chemistry Letters, 2016, 7: 5028-5035. |
[94] | YANG B, CHEN J, HONG F, et al.Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angewandte Chemie International Edition, 2017, 56: 12471-12475. |
[95] | TONG X, KONG W, WANG Y, et al.High-performance red light photodetector based on lead-free bismuth halide perovskite film. ACS Applied Materials & Interfaces, 2017, 9(22): 18977-18985. |
[96] | WANG A, GUO Y, MUHAMMAD F, et al.Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability. Chemistry of Materials, 2017, 29: 6493-6501. |
[97] | ZHANG J, YANG Y, DENG H, et al.High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano, 2017, 11: 9294-9302. |
[98] | LENG M, YANG Y, ZENG K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28: 1704446-1-11. |
[99] | SHI Z, LI Y, ZHANG Y, et al.High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Letters, 2016, 17(1): 313-321. |
[100] | SHAN Q, LI J, SONG J, et al.All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. Journal of Materials Chemistry C, 2017, 5(18): 4565-4570. |
[101] | ZHUANG S, MA X, HU D, et al.Air-stable all inorganic green perovskite light emitting diodes based on ZnO/CsPbBr3/NiO heterojunction structure. Ceramics International, 2018, 44(5): 4685-4688. |
[102] | SHI Z, LI S, LI Y, et al.Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano, 2018, 12(2): 1462-1472. |
[1] | 孔国强, 冷明哲, 周战荣, 夏池, 沈晓芳. Sb掺杂O3型Na0.9Ni0.5Mn0.3Ti0.2O2钠离子电池正极材料[J]. 无机材料学报, 2023, 38(6): 656-662. |
[2] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[3] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[4] | 汪波, 余健, 李存成, 聂晓蕾, 朱婉婷, 魏平, 赵文俞, 张清杰. Gd/Bi0.5Sb1.5Te3热电磁梯度复合材料的服役稳定性[J]. 无机材料学报, 2023, 38(6): 663-670. |
[5] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[6] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[7] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[8] | 李悦, 张旭良, 景芳丽, 胡章贵, 吴以成. 铈掺杂硼酸钙镧晶体的生长与性能研究[J]. 无机材料学报, 2023, 38(5): 583-588. |
[9] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[10] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[11] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[12] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[13] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[14] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[15] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||