无机材料学报 ›› 2018, Vol. 33 ›› Issue (12): 1316-1322.DOI: 10.15541/jim20180189
张恒飞, 刘为, 雷姣姣, 宋华庭, 漆虹
收稿日期:
2018-04-25
修回日期:
2018-06-19
出版日期:
2018-12-20
网络出版日期:
2018-11-27
作者简介:
张恒飞(1994-), 男, 硕士研究生. E-mail: zhanghengfei@njtech.edu.cn
基金资助:
ZHANG Heng-Fei, LIU Wei, LEI Jiao-Jiao, SONG Hua-Ting, QI Hong
Received:
2018-04-25
Revised:
2018-06-19
Published:
2018-12-20
Online:
2018-11-27
About author:
ZHANG Heng-Fei. E-mail: zhanghengfei@njtech.edu.cn
Supported by:
摘要:
以1,2-二(三乙氧基硅基)乙烷(BTESE)为前驱体、PdCl2为钯源, 制备Pd掺杂有机无机杂化SiO2(POS)溶胶, 涂膜后在水蒸气氛围中煅烧, 制备得到POS膜。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、N2吸附-脱附和透射电子显微镜(TEM)对POS粉体的微观结构进行表征。考察了钯/硅摩尔比(n(Pd/Si)=0.1、0.5和1)对POS膜的气体分离性能与水热稳定性能的影响。结果表明: 随着Pd掺杂量的增加, POS膜的H2渗透率逐渐增大, H2/CO2的理想选择性逐渐下降。经100 kPa水蒸气处理180 h后, 采用n (Pd/Si)=1制备的POS膜的H2渗透率达到1.62× 10-7 mol·m-2·s-1·Pa-1, H2/CO2理想分离因子达到13.6, 表明该膜具有较好的H2渗透性能、H2/CO2分离性能和水热稳定性能。
中图分类号:
张恒飞, 刘为, 雷姣姣, 宋华庭, 漆虹. Pd掺杂量对有机无机杂化SiO2膜H2/CO2分离性能和水热稳定性能的影响[J]. 无机材料学报, 2018, 33(12): 1316-1322.
ZHANG Heng-Fei, LIU Wei, LEI Jiao-Jiao, SONG Hua-Ting, QI Hong. Pd Doping on H2/CO2 Separation Performance and Hydrothermal Stability of Organic-inorganic Hybrid SiO2 Membranes[J]. Journal of Inorganic Materials, 2018, 33(12): 1316-1322.
n(Pd/Si) | SBET/(m2·g-1) | Vtotal/(cm3·g-1) | (Vmicro/Vtotal)/% |
---|---|---|---|
0.1 | 490 | 0.29 | 66 |
0.5 | 471 | 0.33 | 53 |
1 | 333 | 0.31 | 39 |
表1 POS粉体的孔结构数据
Table 1 Pore structure data of POS powders
n(Pd/Si) | SBET/(m2·g-1) | Vtotal/(cm3·g-1) | (Vmicro/Vtotal)/% |
---|---|---|---|
0.1 | 490 | 0.29 | 66 |
0.5 | 471 | 0.33 | 53 |
1 | 333 | 0.31 | 39 |
Membranes | Gas permeance/(×10-8, mol· m-2·s-1·Pa-1) | Permselectivity | ||||
---|---|---|---|---|---|---|
H2 (dk=0.289 nm) | CO2 (dk=0.33 nm) | N2 (dk=0.364 nm) | CH4 (dk=0.382 nm) | SF6 (dk=0.55 nm) | H2/CO2 (Knudsen factor: 4.7) | |
POS-0.1 | 2.41 | 0.21 | 0.13 | 0.14 | 0.08 | 11.50 |
POS-0.5 | 13.00 | 2.18 | 0.65 | 0.30 | 0.06 | 5.97 |
POS-1 | 20.70 | 4.58 | 2.48 | 2.99 | 0.93 | 4.52 |
SiO2[ | 63.00 | 1.30 | 0.42 | 0.11 | ≤0.01 | 46.00 |
BTESE[ | 46.20 | 12.40 | 4.40 | 4.00 | - | 3.70 |
Nb-BTESE[ | 6.280 | 0.06 | - | - | - | 108.00 |
表2 SiO2基膜的气体渗透率和H2/CO2理想分离因子
Table 2 Gas permeance and H2/CO2 permselectivity of silica-based membranes
Membranes | Gas permeance/(×10-8, mol· m-2·s-1·Pa-1) | Permselectivity | ||||
---|---|---|---|---|---|---|
H2 (dk=0.289 nm) | CO2 (dk=0.33 nm) | N2 (dk=0.364 nm) | CH4 (dk=0.382 nm) | SF6 (dk=0.55 nm) | H2/CO2 (Knudsen factor: 4.7) | |
POS-0.1 | 2.41 | 0.21 | 0.13 | 0.14 | 0.08 | 11.50 |
POS-0.5 | 13.00 | 2.18 | 0.65 | 0.30 | 0.06 | 5.97 |
POS-1 | 20.70 | 4.58 | 2.48 | 2.99 | 0.93 | 4.52 |
SiO2[ | 63.00 | 1.30 | 0.42 | 0.11 | ≤0.01 | 46.00 |
BTESE[ | 46.20 | 12.40 | 4.40 | 4.00 | - | 3.70 |
Nb-BTESE[ | 6.280 | 0.06 | - | - | - | 108.00 |
图4 POS膜的H2、CO2渗透性能、H2/CO2分离性能随水蒸气处理时间的变化(测试条件: 200℃、300 kPa)
Fig. 4 Variations of H2, CO2 permeance and H2/CO2 permselectivity of POS membranes during hydrothermal treatment (measured at 200℃ and 300 kPa)
n(Pd/Si) | Grain size/nm | Increase ratio/% | |
---|---|---|---|
Before HT | After HT | ||
0.1 | 12.7 | 14.0 | 10 |
0.5 | 20.6 | 28.1 | 36 |
1 | 26.1 | 30.1 | 15 |
表3 POS粉体中Pd晶粒尺寸
Table 3 Grain size of Pd in POS powders
n(Pd/Si) | Grain size/nm | Increase ratio/% | |
---|---|---|---|
Before HT | After HT | ||
0.1 | 12.7 | 14.0 | 10 |
0.5 | 20.6 | 28.1 | 36 |
1 | 26.1 | 30.1 | 15 |
图5 POS粉体水热处理前后的TEM照片
Fig. 5 TEM images of POS powders before and after hydrothermal treatment(a-c) as-prepared POS-0.1, POS-0.5 and POS-1 powders; (d-f) POS-0.1, POS-0.5 and POS-1 powders after hydrothermal treatment
[1] | GEORGIS D, LIMA F V, ALMANSOORI A,et al. Thermal management of a Water-Gas-Shift membrane reactor for high-purity hydrogen production and carbon capture. Industrial & Engineering Chemistry Research, 2014, 53(18): 7461-7469. |
[2] | CHAI M, MACHIDA M, EGUCHI K,et al. Promotion of hydrogen permeation on metal-dispersed alumina membranes and its application to a membrane reactor for methane steam reforming. Applied Catalysis A General, 1994, 110(2): 239-250. |
[3] | SUN Y M, KHANG S J.Catalytic membrane for simultaneous chemical reaction and separation applied to a dehydrogenation reaction.Industrial & Engineering Chemistry Research, 1988, 27(7): 1136-1142. |
[4] | YIN H, KIM H, CHOI J,et al. Thermal stability of ZIF-8 under oxidative and inert environments: a practical perspective on using ZIF-8 as a catalyst support. Chemical Engineering Journal, 2015, 278: 293-300. |
[5] | BUDHI Y W, RIONAIDO H, PADAMA A A B,et al. Forced unsteady state operation for hydrogen separation through Pd-Ag membrane after start-up. International Journal of Hydrogen Energy, 2015, 40(32): 10081-10089. |
[6] | CHEN W H, TSAI C W, LIN Y L.Numerical studies of the influences of bypass on hydrogen separation in a multichannel Pd membrane system. Renewable Energy, 2017, 104: 259-270. |
[7] | NIJMEIJER A.Hydrogen-selective Silica Membranes for Use in Membrane Steam Reforming. ENSCHEDE: UT 1999, 136. |
[8] | GAVALAS G R, MEGIRIS C E, NAM S W.Deposition of H2 - permselective SiO2 films.Chemical Engineering Science, 1989, 44(9): 1829-1835. |
[9] | TSURU T.Nano/subnano-tuning of porous ceramic membranes for molecular separation. Journal of Sol-Gel Science and Technology, 2008, 46(3): 349-361. |
[10] | IMAI H, MORIMOTO H, TOMINAGA A,et al. Structural changes in Sol-Gel derived SiO2 and TiO2 films by exposure to water vapor. Journal of Sol-Gel Science and Technology, 1997, 10(1): 45-54. |
[11] | LI G, KANEZASHI M, TSURU T.Preparation of organic- inorganic hybrid silica membranes using organoalkoxysilanes: the effect of pendant groups.Journal of Membrane Science, 2011, 379(1): 287-295. |
[12] | YANG J, CHEN J T. Hydrophobic modification and silver doping of silica membranes for H2/CO2 separation. Journal of CO2 Utilization, 2013, 3-4: 21-29. |
[13] | KANEZASHI M, YADA K, YOSHIOKA T,et al. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability. Journal of the American Chemical Society, 2009, 131(2): 414-415. |
[14] | UHLMANN D, LIU S, LADEWIG B P,et al. Cobalt-doped silica membranes for gas separation. Journal of Membrane Science, 2009, 326(2): 316-321. |
[15] | KANEZASHI M, SANO M, YOSHIOKA T,et al. Extremely thin Pd-silica mixed-matrix membranes with nano-dispersion for improved hydrogen permeability. Chemical Communications, 2010, 46(33): 6171-6173. |
[16] | QI H, CHEN H R,LI L,et al. Effect of Nb content on hydrothermal stability of a novel ethylene-bridged silsesquioxane molecular sieving membrane for H2/CO2 separation. Journal of Membrane Science, 2012, 421-422: 190-200. |
[17] | IKUHARA Y H, MORI H, SAITO T,et al. High-temperature hydrogen adsorption properties of precursor-derived nickel nanoparticle- dispersed amorphous silica. Journal of the American Ceramic Society, 2007, 90(2): 546-552. |
[18] | KANEZASHI M, FUCHIGAMI D, YOSHIOKA T,et al. Control of Pd dispersion in Sol-Gel-derived amorphous silica membranes for hydrogen separation at high temperatures. Journal of Membrane Science, 2013, 439(14): 78-86. |
[19] | SONG H T, ZHAO S F, LEI J J,et al. Pd-doped organosilica membrane with enhanced gas permeability and hydrothermal stability for gas separation. Journal of Materials Science, 2016, 51(13): 6275-6286. |
[20] | LEI J J, SONG H T, WEI Y B,et al. A novel strategy to enhance hydrothermal stability of Pd-doped organosilica membrane for hydrogen separation. Microporous & Mesoporous Materials, 2017, 253: 55-63. |
[21] | SONG H T, ZHAO S F, CHEN J W, et al. Hydrothermally stable Zr-doped organosilica membranes for H2/CO2 separation. Microporous & Mesoporous Materials, 2016, 224: 277-284. |
[22] | YAMAMOTO K, OHSHITA J, MIZUMO T,et al. Efficient synthesis of SiOC glasses from ethane, ethylene, and acetylene- bridged polysilsesquioxanes. Journal of Non-Crystalline Solids, 2015, 408: 137-141. |
[23] | NGAMOU P T, OVERBEEK J, KREITER R, et al. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges. Journal of Materials Chemistry A, 2013, 1(18): 5567-5576. |
[24] | AI-OWEINI R, EI-RASSY H.Synthesis and characterization by FT-IR spectroscopy of silica aerogels prepared using several Si(OR)4, and RSi(OR°)3, precursors.Journal of Molecular Structure, 2009, 919(1): 140-145. |
[25] | BOFFA V, BLANK D H A, ELSHOF J E T. Hydrothermal stability of microporous silica and niobia-silica membranes.Journal of Membrane Science, 2008, 319(1/2): 256-263. |
[26] | QURESHI H F, NIJMEIJER A, WINNUBST L.Influence of Sol-Gel process parameters on the micro-structure and performance of hybrid silica membranes.Journal of Membrane Science, 2013, 446: 19-25. |
[27] | NAGASAW H, NIIMI T, KANEZASHI M.et al. Modified gas-translation model for prediction of gas permeation through microporous organosilica membranes. AICHE Journal, 2015, 60(12): 4199-4210. |
[28] | SONG H T, WEI Y B, QI H.Tailoring pore structures to improve the permselectivity of organosilica membranes by tuning calcination parameters.Journal of Materials Chemistry A, 2017, 5(47): 24657-24666. |
[1] | 李子宜, 章佳佳, 邹小勤, 左家玉, 李俊, 刘应书, 裴有康. 菱沸石分子筛膜的合成调控与气体分离研究进展[J]. 无机材料学报, 2021, 36(6): 579-591. |
[2] | 杨浏鑫,罗文华,汪长安,徐晨. 新型无机二维材料在气体分离膜领域的研究进展[J]. 无机材料学报, 2020, 35(9): 959-971. |
[3] | 殷慧敏, 杨建华, 谢 忠, 王金渠, 鲁金明, 张 艳. 功能化无机粒子修饰大孔载体反扩散法制备ZIF-7膜[J]. 无机材料学报, 2014, 29(4): 377-381. |
[4] | 郁蕉竹, 李 琳, 金 鑫, 丁玲华, 王同华. PDMS低温热解制备有机/无机膜的研究[J]. 无机材料学报, 2014, 29(2): 137-142. |
[5] | 孙美悦, 李 琳, 张萍萍, 徐家家, 郁焦竹, 王同华. P25杂化炭膜的制备及其气体分离性能[J]. 无机材料学报, 2013, 28(5): 485-489. |
[6] | 宋成文, 姜大伟, 李 琳, 孙美悦, 王同华. PMDA-ODA型聚酰亚胺炭/碳纳米管杂化膜的制备及气体分离性能研究[J]. 无机材料学报, 2012, 27(9): 923-927. |
[7] | 杜淑慧, 刘亚光, 孔令寅, 张 健, 刘海鸥, 张雄福. 预涂晶种诱导法在α-Al2O3陶瓷管载体上合成ZIF-8膜[J]. 无机材料学报, 2012, 27(10): 1105-1111. |
[8] | 庞 婧, 王同华, 李琳, 祁文博, 曹义鸣. 不同干燥方式对聚醚砜酮基炭膜的影响[J]. 无机材料学报, 2011, 26(2): 165-159. |
[9] | 漆 虹, 韩 静, 江晓骆, 邢卫红, 范益群. 有机-无机复合SiO2膜的制备及水蒸气稳定性能研究[J]. 无机材料学报, 2010, 25(7): 758-764. |
[10] | 李 琳1, 王同华1, 曹义鸣2, 邱介山1. 气体分离炭膜的结构设计、制备及功能化[J]. 无机材料学报, 2010, 25(5): 449-456. |
[11] | 赵选英,王同华,李 琳,刘 颖,曹义鸣. Fe3O4掺杂制备气体分离功能炭膜[J]. 无机材料学报, 2010, 25(1): 47-52. |
[12] | 李芳菲,蒋引珊,夏茂盛,孙萌萌,薛 兵,刘大锐. 纳米白炭黑对介孔蒙脱石水热稳定性的增强作用[J]. 无机材料学报, 2009, 24(5): 1025-1030. |
[13] | 周志华,鲁金明,巫树锋,周敬林,王金渠. 两步晶化法制备MCM-48/ZSM-5复合分子筛[J]. 无机材料学报, 2009, 24(2): 325-329. |
[14] | 茂功,钟顺和. 聚酰亚胺/TiO2 复合膜的制备、表征和气体渗透性测定[J]. 无机材料学报, 2007, 22(1): 148-152. |
[15] | 李永昕,张艳华,薛冰. NaY/MCM-48复合分子筛的合成与表征[J]. 无机材料学报, 2006, 21(5): 1209-1216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||