无机材料学报 ›› 2018, Vol. 33 ›› Issue (12): 1274-1288.DOI: 10.15541/jim20180247
所属专题: 药物载体与防护材料
王亚斌1, 刘忠2,3, 史时辉1, 呼科科1, 张琰图1, 郭敏2,3
收稿日期:
2018-05-29
修回日期:
2018-06-29
出版日期:
2018-12-20
网络出版日期:
2018-11-27
作者简介:
王亚斌(1985-), 男, 博士, 讲师. E-mail: ybw@yau.edu.cn
基金资助:
WANG Ya-Bin1, LIU Zhong2,3, SHI Shi-Hui1, HU Ke-Ke1, ZHANG Yan-Tu1, GUO Min2,3
Received:
2018-05-29
Revised:
2018-06-29
Published:
2018-12-20
Online:
2018-11-27
About author:
WANG Ya-Bin. E-mail: ybw@yau.edu.cn
Supported by:
摘要:
与传统二氧化硅介孔材料相比, 树枝状纤维形二氧化硅纳米粒子(Dendritic Fibrous Nano-silica, DFNS), 特别是具备三维中心辐射状孔道和多级孔结构的球形DFNS拥有较高的比表面积、较大的孔体积、较高的孔渗透性和粒子内表面更易接触性等优点。客体物质(如极小的纳米粒子)能够沿着中心辐射状孔道进行负载和/或输送, 甚至与化学改性所得内部活性位点发生反应。因此, DFNS是一种富有前景的载体平台, 可以用来构筑新型纳米催化剂、吸附剂、基因/蛋白质/药物的递送系统等。大量研究表明: 球形DFNS与生俱来的结构优势使其能够作为MCM-41和SBA-15的理想替代材料。但是, DFNS领域依旧存在很多需要探讨的问题。因此, 本文主要归纳分析DFNS的结构特征、常用结构模型、新型结构和实时应用。希望能够给予材料和化学科学家一些参考, 促进DFNS的蓬勃发展。
中图分类号:
王亚斌, 刘忠, 史时辉, 呼科科, 张琰图, 郭敏. 树枝状纤维形二氧化硅纳米粒子的研究进展[J]. 无机材料学报, 2018, 33(12): 1274-1288.
WANG Ya-Bin, LIU Zhong, SHI Shi-Hui, HU Ke-Ke, ZHANG Yan-Tu, GUO Min. Research Progress of Dendritic Fibrous Nano-silica (DFNS)[J]. Journal of Inorganic Materials, 2018, 33(12): 1274-1288.
图1 树枝状纤维形二氧化硅纳米球的透射电镜(a)~(c)和扫描电镜(d)~(f)照片[23]
Fig. 1 TEM (a-c) and SEM (d-f) images of silica-based nanospheres with dendritic fibrous morphologies[23]
No. | English appellation | Appellation abbreviation | Chinese appellation | Ref. |
---|---|---|---|---|
1 | Dendritic fibrous nanosilica | DFNS or (KCC-1) | 树枝状纤维形二氧化硅纳米粒子 | [25-28, 30] |
2 | Three dimensional dendritic mesoporous silica nanospheres | 3D dendritic MSNSs | 三维树枝状介孔二氧化硅纳米球 | [22, 31-32] |
3 | Dendrimer-like silica nanoparticles with hierarchical pores | HPSNs | 树枝状多级孔二氧化硅纳米粒子 | [17,21,33-34] |
4 | Dendritic mesoporous silica nanoparticles | DMSNs | 树枝状介孔二氧化硅纳米粒子 | [35-42] |
5 | Dendritic mesoporous silica nanospheres | DMSNs | 树枝状介孔二氧化硅纳米球 | [43-45] |
6 | Fibrous mesoporous silica microspheres | FMSMs | 纤维形介孔二氧化硅微球 | [46-47] |
7 | Wrinkled silica nanoparticles | WSNs | 褶皱状二氧化硅纳米粒子 | [48-52] |
8 | Wrinkled mesoporous silica | WMS | 褶皱状介孔二氧化硅 | [53-56] |
9 | Wrinkled mesoporous silica nanoparticles | WMSNs | 褶皱状介孔二氧化硅纳米粒子 | [57-58] |
10 | Radial-like mesoporous silica | RMS | 中心辐射状介孔二氧化硅 | [59-60] |
11 | Fibrous silicon dioxides spheres | FSS | 纤维形二氧化硅球 | [61] |
12 | Fibrous silica nanoparticles or nanospheres | FSNs | 纤维形二氧化硅纳米粒子或纳米球 | [62] |
13 | Hierarchically and radially mesoporous silica | HRM | 分层次和辐射状介孔二氧化硅 | [63] |
14 | Hierarchically structured spherical mesoporous nanoflowers | HSMNF | 分层次结构球形介孔纳米花”和 | [64] |
15 | Mesostructured silica nanoparticles | MSNs | 介孔结构二氧化硅纳米粒子 | [33, 65-67] |
16 | “Dendritic” | - | [13, 68-70] | |
17 | “Fibrous” | - | [71-79] |
表1 树枝状纤维形二氧化硅纳米粒子称谓概括
Table 1 English and Chinese appellations, and their abbreviations for silica nanoparticles with dendritic fibrous structures
No. | English appellation | Appellation abbreviation | Chinese appellation | Ref. |
---|---|---|---|---|
1 | Dendritic fibrous nanosilica | DFNS or (KCC-1) | 树枝状纤维形二氧化硅纳米粒子 | [25-28, 30] |
2 | Three dimensional dendritic mesoporous silica nanospheres | 3D dendritic MSNSs | 三维树枝状介孔二氧化硅纳米球 | [22, 31-32] |
3 | Dendrimer-like silica nanoparticles with hierarchical pores | HPSNs | 树枝状多级孔二氧化硅纳米粒子 | [17,21,33-34] |
4 | Dendritic mesoporous silica nanoparticles | DMSNs | 树枝状介孔二氧化硅纳米粒子 | [35-42] |
5 | Dendritic mesoporous silica nanospheres | DMSNs | 树枝状介孔二氧化硅纳米球 | [43-45] |
6 | Fibrous mesoporous silica microspheres | FMSMs | 纤维形介孔二氧化硅微球 | [46-47] |
7 | Wrinkled silica nanoparticles | WSNs | 褶皱状二氧化硅纳米粒子 | [48-52] |
8 | Wrinkled mesoporous silica | WMS | 褶皱状介孔二氧化硅 | [53-56] |
9 | Wrinkled mesoporous silica nanoparticles | WMSNs | 褶皱状介孔二氧化硅纳米粒子 | [57-58] |
10 | Radial-like mesoporous silica | RMS | 中心辐射状介孔二氧化硅 | [59-60] |
11 | Fibrous silicon dioxides spheres | FSS | 纤维形二氧化硅球 | [61] |
12 | Fibrous silica nanoparticles or nanospheres | FSNs | 纤维形二氧化硅纳米粒子或纳米球 | [62] |
13 | Hierarchically and radially mesoporous silica | HRM | 分层次和辐射状介孔二氧化硅 | [63] |
14 | Hierarchically structured spherical mesoporous nanoflowers | HSMNF | 分层次结构球形介孔纳米花”和 | [64] |
15 | Mesostructured silica nanoparticles | MSNs | 介孔结构二氧化硅纳米粒子 | [33, 65-67] |
16 | “Dendritic” | - | [13, 68-70] | |
17 | “Fibrous” | - | [71-79] |
图2 树枝状纤维形二氧化硅纳米球的结构态转变[89]
Fig. 2 The structural transformation of a DFNS from a quasi dendritic state[89] (a) to a quasi radially fibrous state[23] (c) through an intermediate state of “dendritic fibrous”[11] (b). The forming process of a dendrimer by iterative grafting steps (d)
图3 DFNS相关文献逐年发表情况(a)及应用领域范围(b)
Fig. 3 The percentages of published literatures about DFNS from 2008 to 2018 (a), and the percentages of various applications for DFNS (b)
图5 不同结构二氧化硅纳米粒子的二维示意图[110,127,149-150]
Fig. 5 Schematic diagrams of 2D planar structures from various silica nanospheres[110,127,149-150] (a) DFNS; (b) Hierarchical radial porous sphere; (c) Hierarchical porous sphere; (d) Radial porous sphere with a magnetic core; (e) Porous sphere with a magnetic core; (f) Sunflower-like magnetic porous sphere
Synthetic approach | Cyclohexane emulsions for DFNS or KCC-1 | Ethyl ether emulsion for HSMNs | Biphase stratification for 3D dendritic MSNSs |
---|---|---|---|
Pore size range | ca. 2-30 nm | ca. 8-200 nm | ca. 2.8-10 nm |
Particle size range | ca. 170-1120 nm | ca. 100-1100 nm | ca. 180-280 nm |
Repeatability | Excellent | Excellent | Excellent |
Maneuverability | Easy | Easy | Normal |
Particles’uniformity | Poor | Poor | Excellent |
Pores’ uniformity | Good | Average | Excellent |
By-product | None | Some | None |
Intermediate products | Some | Some | None |
Universality | ~70% | ~17% | ~3% |
Significance | Facility and universality | Macropores for diverse guests | Uniformity for fine control |
表2 KCC-1环己烷乳液法、乙醚乳液法和油水双相分层法适用性对比
Table 2 Comparison of the approaches applied to synthesize DFNS spheres, including: cyclohexane emulsions for KCC-1, ethyl ether emulsion for HSMNs, and biphase stratification technique for 3D dendritic MSNSs
Synthetic approach | Cyclohexane emulsions for DFNS or KCC-1 | Ethyl ether emulsion for HSMNs | Biphase stratification for 3D dendritic MSNSs |
---|---|---|---|
Pore size range | ca. 2-30 nm | ca. 8-200 nm | ca. 2.8-10 nm |
Particle size range | ca. 170-1120 nm | ca. 100-1100 nm | ca. 180-280 nm |
Repeatability | Excellent | Excellent | Excellent |
Maneuverability | Easy | Easy | Normal |
Particles’uniformity | Poor | Poor | Excellent |
Pores’ uniformity | Good | Average | Excellent |
By-product | None | Some | None |
Intermediate products | Some | Some | None |
Universality | ~70% | ~17% | ~3% |
Significance | Facility and universality | Macropores for diverse guests | Uniformity for fine control |
图6 不同结构DFNS类复合纳米粒子的TEM照片
Fig. 6 TEM images of nanoparticles with diverse morphologies developed by means of DFNS reaction systems(a) Core-shelled Fe3O4@SiO2@KCC-1[8]; (b) Fe3O4/DFNS composites[47]; (c) Core-shelled TS-1@KCC-1[80]; (d) Core-shelled SiO2@DFNS[134]; (e) Hollow DFNS [86]; (f) Janus DFNS/Mg@Au[121]; (g) Shuttlecock-shaped DFNS Au@Mg-DFNS[48]; (h) Yolk-shelled Fe3O4@DFNS[144]; (i) Yolk-shelled DFNS/Pt@MSS[159]
图7 树枝状纤维形纳米粒子的设计合成、结构设计以及应用前景示意图
Fig. 7 Schematic illustration of designed synthesis, designed structures, and promising applications for dendritic fibrous nano-particles
[1] | LI W, LIU J, ZHAO D Y.Mesoporous materials for energy conversion and storage devices.Nature Reviews Materials, 2016, 1: 16023. |
[2] | SCH TH F, SCHMIDT W.Microporous and mesoporous materials.Advanced Engineering Materials, 2002, 4(5): 269-279. |
[3] | KRESGE C T, LEONOWICZ M E, ROTH W J,et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710-712. |
[4] | ZHAO D Y, FENG J L, HUO Q S,et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548-552. |
[5] | POLSHETTIWAR V, CHA D, ZHANG X X,et al. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology. Angewandte Chemie International Edition, 2010, 49(50): 9652-9656. |
[6] | BAYAL N, SINGH B, SINGH R, ,et al. Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1). Scientific Reports, 2016, 6: 24888-1-11. |
[7] | FIHRI A, CHA D, BOUHRARA M,et al. Fibrous nano-silica (KCC-1)-supported palladium catalyst: Suzuki coupling reactions under sustainable conditions. ChemSusChem, 2012, 5(1): 85-89. |
[8] | YU K J, ZHANG X B, TONG H W,et al. Synthesis of fibrous monodisperse core-shell Fe3O4/SiO2/KCC-1. Materials Letters, 2013, 106(9): 151-154. |
[9] | PENG H G, WANG D R, XU L,et al. One-pot synthesis of primary amides on bifunctional Rh(OH)x/TS-1@KCC-1 catalysts. Chinese Journal of Catalysis, 2013, 34(11): 2057-2065. |
[10] | BOUHRARA M, RANGA C, FIHRI A,et al. Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst. ACS Sustainable Chemistry & Engineering, 2013, 1(9): 1192-1199. |
[11] | HUANG X X, TAO Z M, PRASKAVICH J C,et al. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro. Langmuir, 2014, 30(36): 10886-10898. |
[12] | FEBRIYANTI E, SUENDO V, MUKTI R R,et al. Further insight on the definite morphology and formation mechanism of mesoporous silica KCC-1. Langmuir, 2016, 32(23): 5802-5811. |
[13] | ALI Z, TIAN L, ZHANG B L,et al. Synthesis of paramagnetic dendritic silica nanomaterials with fibrous pore structure (Fe3O4@KCC-1) and their application in immobilization of lipase from Candida rugosa with enhanced catalytic activity and stability. New Journal of Chemistry, 2017, 41(16): 8222-8231. |
[14] | FATAH N A A, TRIWAHYONO S, JALIL A A,et al. n-heptane isomerization over molybdenum supported on bicontinuous concentric lamellar silica KCC-1: influence of phosphorus and optimization using response surface methodology (RSM). Chemical Engineering Journal, 2017, 314: 650-659. |
[15] | DU X, HE J H.Fine-tuning of silica nanosphere structure by simple regulation of the volume ratio of cosolvents.Langmuir, 2010, 26(12): 10057-10062. |
[16] | DU X, QIAO S Z.Dendritic silica particles with center-radial pore channels: promising platforms for catalysis and biomedical applications.Small, 2015, 11(4): 392. |
[17] | DU X, SHI B Y, LIANG J,et al. Developing functionalized dendrimer-like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers. Advanced Materials, 2013, 25(41): 5981-5985. |
[18] | DU X, XIONG L, DAI S,et al. Intracellular microenvironment responsive dendrimer-like mesoporous nanohybrids for traceable, effective, and safe gene delivery. Advanced Functional Materials, 2014, 24(48): 7627-7637. |
[19] | DU X, SHI B Y, TANG Y H,et al. Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery. Biomaterials, 2014, 35(21): 5580-5590. |
[20] | DU X, XING Y, ZHOU M Y,et al. Broadband antireflective superhydrophilic antifogging nano-coatings based on three-layer system. Microporous and Mesoporous Materials, 2018, 255: 84-93. |
[21] | DU X, LI X Y, HUANG H W,et al. Dendrimer-like hybrid particles with tunable hierarchical pores. Nanoscale, 2015, 7(14): 6173-6184. |
[22] | SHEN D K, YANG J P, LI X M,et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Letters, 2014, 14(2): 923-932. |
[23] | DING X P, WANG Y B, HUANG Y D.Hydrothermal synthesis and characterization of fibrous silica nanospheres.Journal of Harbin Institute of Technology, 2018, 50(2): 116-121. |
[24] | DU X, ZHAO C X, HUANG H W,et al. Synthesis of dendrimer- like porous silica nanoparticles and their applications in advanced carrier. Progress in Chemistry, 2016, 28(8): 1131-1147. |
[25] | MAITY A, POLSHETTIWAR V.Dendritic fibrous nanosilica (DFNS) for catalysis, energy harvesting, CO2 mitigation, drug delivery and sensing.ChemSusChem, 2017, 10: 3866-3913. |
[26] | MAITY A, DAS A, SEN D,et al. Unraveling the formation mechanism of dendritic fibrous nanosilica. Langmuir, 2017, 33(48): 13774-13782. |
[27] | YAMAGUCHI T, MAITY A, POLSHETTIWAR V,et al. Photochromism of a spiropyran in the presence of a dendritic fibrous nanosilica; simultaneous photochemical reaction and adsorption. The Journal of Physical Chemistry A, 2017, 121(42): 8080-8085. |
[28] | YAMAGUCHI T, MAITY A, POLSHETTIWAR V,et al. Negative photochromism based on molecular diffusion between hydrophilic and hydrophobic particles in the solid state. Inorganic Chemistry, 2018, 57(7): 3671-3674. |
[29] | SINGH R, BELGAMWAR R, DHIMAN M,et al. Dendritic fibrous nano-silica supported gold nanoparticles as an artificial enzyme. Journal of Materials Chemistry B, 2018, 6(11): 1600-1604. |
[30] | BAYAL N, SINGH R, POLSHETTIWAR V.Nanostructured silica-titania hybrid using dendritic fibrous nanosilica as a photocatalyst.ChemSusChem, 2017, 10(10): 2182-2191. |
[31] | ZHANG S H, WEN L, YANG J P,et al. Facile fabrication of dendritic mesoporous SiO2@CdTe@SiO2 fluorescent nanoparticles for bioimaging. Particle and Particle Systems Characterization, 2016, 33(5): 261-270. |
[32] | YANG J P, SHEN D K, WEI Y,et al. Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Research, 2015, 8(8): 2503-2514. |
[33] | DU X, HE J H.Hierarchically mesoporous silica nanoparticles: extraction, amino-functionalization, and their multipurpose potentials.Langmuir, 2011, 27(6): 2972-2979. |
[34] | DAI L L, ZHANG Q F, LI J H,et al. Dendrimer-like mesoporous silica nanoparticles as pH-responsive nanocontainers for targeted drug delivery and bioimaging. ACS Applied Materials & Interfaces, 2015, 7(13): 7357-7372. |
[35] | YU Y J, XING J L, PANG J L,et al. Facile synthesis of size controllable dendritic mesoporous silica nanoparticles. ACS Applied Materials & Interfaces, 2014, 6(24): 22655-22665. |
[36] | XU Y, ZHU Y F, LI X L,et al. Investigation of dendritic mesoporous silica nanoparticles for cytosine phosphate guanosine oligodeoxynucleotide delivery. Materials Express, 2016, 6(2): 116-126. |
[37] | LEI C, XU C, NOUWENS A,et al. Ultrasensitive ELISA+ enhanced by dendritic mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2016, 4(29): 4975-4979. |
[38] | LIN C X C, XU C, YANG Y,et al. Dendritic mesoporous silica- titania nanospheres with enhanced photocatalytic activities. New Journal of Chemistry, 2017, 41: 8754-8760. |
[39] | WANG Y, NOR Y A, SONG H,et al. Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. Journal of Materials Chemistry B, 2016, 4(15): 2646-2653. |
[40] | WANG J, WANG Y, LIU Q,et al. Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy. ACS Applied Materials & Interfaces, 2016, 8(40): 26511-26523. |
[41] | QU L L, HU H C, YU J Q,et al. High-yield synthesis of Janus dendritic mesoporous silica@resorcinol formaldehyde nanoparticles: a competing growth mechanism. Langmuir, 2017, 33(21): 5269-5274. |
[42] | LI Z X, ZHANG L L, TANG C,et al. Co-delivery of doxorubicin and survivin shRNA-expressing plasmid via microenvironment responsive dendritic mesoporous silica nanoparticles for synergistic cancer therapy. Pharmaceutical Research, 2017, 34(12): 2829-2841. |
[43] | HUANG M X, LIU L, WANG S G,et al. Dendritic mesoporous silica nanospheres synthesized by a novel dual-templating micelle system for the preparation of functional nanomaterials. Langmuir, 2017, 33(2): 519-526. |
[44] | XUE X L, LANG W Z, YAN X,et al. Dispersed vanadium in three-dimensional dendritic mesoporous silica nanospheres: active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2. ACS Applied Materials & Interfaces, 2017, 9(18): 15408-15423. |
[45] | TAO L, ZHONG M M, CHEN J,et al. Heterogeneous hydroformylation of long-chain alkenes in IL-in-oil Pickering emulsion. Green Chemistry, 2018, 20(1): 188-196. |
[46] | GAI S L, YANG P P, MA P A,et al. Uniform and size-tunable mesoporous silica with fibrous morphology for drug delivery. Dalton Transactions, 2012, 41(15): 4511-4516. |
[47] | GAI S L, YANG P P, MA P A,et al. Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery. Journal of Materials Chemistry, 2011, 21(41): 16420-16426. |
[48] | MOON D S, LEE J K.Formation of wrinkled silica mesostructures based on the phase behavior of pseudoternary systems.Langmuir, 2014, 30(51): 15574-15580. |
[49] | PANG J L, ZHOU G W, LIU R R,et al. Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels. Materials Science and Engineering C, 2016, 59: 35-42. |
[50] | JUNG D, KIM Y J, LEE J K.Novel strategy for maintenance of catalytic activity using wrinkled silica nanoparticle support in fischer-tropsch synthesis.Bulletin of the Korean Chemical Society, 2016, 37(3): 386-389. |
[51] | SHABIR J, GARKOTI C, SURABHI,et al. Development of amine functionalized wrinkled silica nanospheres and their application as efficient and recyclable solid base catalyst. Catalysis Letters, 2018, 148(1): 194-204. |
[52] | YOON C M, RYU J, YUN J,et al. Synthesis of hierarchical silica/ titania hollow nanoparticles and their enhanced electroresponsive activity. ACS Applied Materials & Interfaces, 2018, 10(7): 6570-6579. |
[53] | WAN X J, ZHUANG L L, SHE B X,et al. In-situ reduction of monodisperse nanosilver on hierarchical wrinkled mesoporous silica with radial pore channels and its antibacterial performance. Materials Science and Engineering C, 2016, 65: 323-330. |
[54] | WANG Z J, BALKUS K J.Synthesis and modification of titanium containing wrinkled mesoporous silica for cyclohexene epoxidation.Microporous and Mesoporous Materials, 2017, 243: 76-84. |
[55] | WANG Z J, BALKUS K J.Liquid phase propylene oxidation with tert-butyl hydroperoxide over titanium containing wrinkled mesoporous silica.Catalysis Communications, 2017, 96: 15-18. |
[56] | HUANG X Y, TOWNLEY H.Knock-down of ELMO1 in paediatric rhabdomyosarcoma cells by nanoparticle mediated siRNA delivery.Nanobiomedicine, 2016, 3: 1-10. |
[57] | MUNAWEERA I, KONERU B, SHI Y,et al. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy. APL Materials, 2014, 2(11): 123-128. |
[58] | MUNAWEERA I, SHI Y, KONERU B,et al. Nitric oxide- and cisplatin-releasing silica nanoparticles for use against non-small cell lung cancer. Journal of Inorganic Biochemistry, 2015, 153: 23-31. |
[59] | QIAN T T, LI J H, MIN X,et al. Radial-like mesoporous silica sphere: a promising new candidate of supporting material for storage of low-, middle-, and high-temperature heat. Energy, 2016, 112: 1074-1083. |
[60] | QIAN T T, YIN X P, LI J H,et al. Nano-TiO2 decorated radial- like mesoporous silica: preparation, characterization, and adsorption- photodegradation behavior. Journal of Materials Science and Technology, 2017, 33(11): 1314-1322. |
[61] | GUO D Y, CHEN X A, FANG Z P,et al. Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes. Electrochimica Acta, 2015, 176: 207-214. |
[62] | LEE S, CHOI K Y. Ethylene polymerization over metallocene catalysts supported on highly fibrous silica nanoparticles. Macromolecular Reaction Engineering, 2017, 11(1): 1600027-1-9. |
[63] | CHOI Y, YUN Y S, PARK H,et al. A facile approach for the preparation of tunable acid nano-catalysts with a hierarchically mesoporous structure. Chemical Communications, 2014, 50(57): 7652-7655. |
[64] | YANG H, LIAO S J, HUANG C,et al. Facile one-pot approach to the synthesis of spherical mesoporous silica nanoflowers with hierarchical pore structure. Applied Surface Science, 2014, 314(24): 7-14. |
[65] | YAMADA H, UJIIE H, URATA C,et al. A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology. Nanoscale, 2015, 7(46): 19557-19567. |
[66] | YAMAMOTO E, KITAHARA M, TSUMURA T,et al. Preparation of size-controlled monodisperse colloidal mesoporous silica nanoparticles and fabrication of colloidal crystals. Chemistry of Materials, 2014, 26(9): 2927-2933. |
[67] | DU X, HE J H.Facile fabrication of hollow mesoporous silica nanospheres for superhydrophilic and visible/near-IR antireflection coatings.Chemistry-A European Journal, 2011, 17(29): 8165-8174. |
[68] | QU Q S, XUAN H, ZHANG K H,et al. Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. Journal of Chromatography A, 2017, 1505: 63-68. |
[69] | QU Q S, SI Y, XUAN H,et al. Dendritic core-shell silica spheres with large pore size for separation of biomolecules. Journal of Chromatography A, 2018, 1540: 31-37. |
[70] | TIAN J, YANG D J, WEN J G,et al. A stable rhodium single- site catalyst encapsulated within dendritic mesoporous nanochannels. Nanoscale, 2018, 10(3): 1047-1055. |
[71] | DHIMAN M, CHALKE B, POLSHETTIWAR V.Organosilane oxidation with a half million turnover number using fibrous nanosilica supported ultrasmall nanoparticles and pseudo-single atoms of gold.Journal of Materials Chemistry A, 2017, 5(5): 1935-1940. |
[72] | RADHAKRISHNAN K, PANNEERSELVAM P, RAVIKUMAR A.A hybrid magnetic core-shell fibrous silica nanocomposite for a chemosensor-based highly effective fluorescent detection of Cu(II).RSC Advances, 2017, 7(72): 45824-45833. |
[73] | WANG Y F, ZHOU J J, ZHANG B L,et al. Fabrication and characterization of glutathione-imprinted polymers on fibrous SiO2 microspheres with high specific surface. Chemical Engineering Journal, 2017, 327: 932-940. |
[74] | FAN H T, LI B, SHI Z Z,et al. A fibrous morphology silica- CoFe2O4 nanocarrier for anti-cancer drug delivery. Ceramics International, 2018, 44(2): 2345-2350. |
[75] | DENG X H, RIN R, TSENG J C,et al. Monodispersed mesoporous silica spheres supported Co3O4 as robust catalyst for oxygen evolution reaction. ChemCatChem, 2017, 9(22): 4238-4243. |
[76] | ALAMRI H, AL-SHAHRANI A, BOVERO E,et al. Self- cleaning superhydrophobic epoxy coating based on fibrous silica- coated iron oxide magnetic nanoparticles. Journal of Colloid and Interface Science, 2018, 513: 349-356. |
[77] | QU Q S, SI Y, XUAN H,et al. Synthesis of core-shell silica spheres with tunable pore diameters for HPLC. Materials Letters, 2018, 211: 40-42. |
[78] | ALI Z, TIAN L, ZHANG B L,et al. Synthesis of fibrous and non-fibrous mesoporous silica magnetic yolk-shell microspheres as recyclable supports for immobilization of candida rugosa lipase. Enzyme and Microbial Technology, 2017, 103: 42-52. |
[79] | AFZAL S, QUAN X, CHEN S,et al. Synthesis of manganese incorporated hierarchical mesoporous silica nanosphere with fibrous morphology by facile one-pot approach for efficient catalytic ozonation. Journal of Hazardous Materials, 2016, 318: 308-318. |
[80] | PENG H G, XU L, WU H L,et al. One-pot synthesis of benzamide over a robust tandem catalyst based on center radially fibrous silica encapsulated TS-1. Chemical Communications, 2013, 49(26): 2709-2711. |
[81] | ZHANG K, XU L L, JIANG J G,et al. Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. Journal of the American Chemical Society, 2013, 135(7): 2427-2430. |
[82] | LIM S W, JANG H G, SIM H I,et al. Preparation of dandelion- type silica spheres and their application as catalyst supports. Journal of Porous Materials, 2014, 21(5): 797-809. |
[83] | MIN Y, YANG K G, LIANG Z,et al. Dandelion-like core-shell silica microspheres with hierarchical pores. RSC Advances, 2015, 5(33): 26269-26272. |
[84] | CHEN R K, YANG F D, XUE Y,et al. Polypyrrole confined in dendrimer-like silica nanoparticles for combined photothermal and chemotherapy of cancer. RSC Advances, 2016, 6(45): 38931-38942. |
[85] | ERNAWATI L, BALGIS R, OGI T,et al. Tunable synthesis of mesoporous silica particles with unique radially oriented pore structures from tetramethyl orthosilicate via oil-water emulsion process. Langmuir, 2017, 33(3): 783-790. |
[86] | WANG D D, LI X Y, LIU Z H,et al. Preparation of hollow silica nanospheres in O/W microemulsion system by hydrothermal temperature changes. Solid State Sciences, 2017, 63: 62-69. |
[87] | WANG R L, HABIB E, ZHU X X.Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.Dental Materials, 2017, 33: 1139-1148. |
[88] | SING K S W. Reporting physisorption data for gas/solid systems- with special reference to the determination of surface area and porosity.Pure & Applied Chemistry, 1985, 57(4): 603-619. |
[89] | DU X, HE J H.Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers.Nanoscale, 2011, 4(3): 852-859. |
[90] | BHUNIA M K, MELISSEN S, PARIDA M R,et al. Dendritic tip-on polytriazine-based carbon nitride photocatalyst with high hydrogen evolution activity. Chemistry of Materials, 2015, 27(24): 8237-8247. |
[91] | FR CHET J M J, TOMALIA D A, Dendrimers and Other Dendritic Polymers. New Jersey: John Wiley & Sons, 2002: 3-40. |
[92] | POLSHETTIWAR V, THIVOLLE-CAZAT J, TAOUFIK M,et al. “Hydro-metathesis” of olefins: a catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres. Angewandte Chemie International Edition, 2011, 50(12): 2747-2751. |
[93] | PARK D S, YUN D, CHOI Y,et al. Effect of 3D open-pores on the dehydration of n-butanol to di-n-butyl ether (DNBE) over a supported heteropolyacid catalyst. Chemical Engineering Journal, 2013, 228(6): 889-895. |
[94] | HAMID M Y S, FIRMANSYAH M L, TRIWAHYONO S,et al. Oxygen vacancy-rich mesoporous silica KCC-1 for CO2 methanation. Applied Catalysis A General, 2017, 532: 86-94. |
[95] | DONG Z P, LE X D, DONG C X,et al. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Applied Catalysis B Environmental, 2015, 162(162): 372-380. |
[96] | LE X D, DONG Z P, LI X L,et al. Fibrous nano-silica supported palladium nanoparticles: an efficient catalyst for the reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol under mild conditions. Catalysis Communications, 2015, 59: 21-25. |
[97] | LE X D, DONG Z P, LIU Y S,et al. Palladium nanoparticles immobilized on core-shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions. Journal of Materials Chemistry A, 2014, 2(46): 19696-19706. |
[98] | QURESHI Z S, SARAWADE P B, ALBERT M,et al. Palladium nanoparticles supported on fibrous-structured silica nanospheres (KCC-1): an efficient and selective catalyst for the transfer hydrogenation of alkenes. ChemCatChem, 2015, 7(4): 635-642. |
[99] | QURESHI Z S, SARAWADE P B, HUSSAIN I,et al. Gold nanoparticles supported on fibrous silica nanospheres (KCC-1) as efficient heterogeneous catalysts for CO oxidation. ChemCatChem, 2016, 8: 1671-1678. |
[100] | SADEGHZADEH S M.A heteropolyacid-based ionic liquid immobilized onto fibrous nano-silica as an efficient catalyst for the synthesis of cyclic carbonate from carbon dioxide and epoxides.Green Chemistry, 2015, 17(5): 3059-3066. |
[101] | SIDDIQUI Z N, KHAN K, AHMED N.Nano fibrous silica sulphuric acid as an efficient catalyst for the synthesis of β-enaminone. Catalysis Letters, 2014, 144(4): 623-632. |
[102] | SINGH R, BAPAT R, QIN L J,et al. Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catalysis, 2016, 6(5): 2770-2784. |
[103] | YANG H L, LI S W, ZHANG X Y,et al. Imidazolium ionic liquid- modified fibrous silica microspheres loaded with gold nanoparticles and their enhanced catalytic activity and reusability for the reduction of 4-nitrophenol. Journal of Materials Chemistry A, 2014, 2(2): 12060-12067. |
[104] | LAI L, ZHANG L L, HU C,et al. Enhanced Fenton-catalytic efficiency by highly accessible active sites on dandelion-like copper-aluminum-silica nanospheres for water purification. Journal of Materials Chemistry A, 2016, 4(22): 8610-8619. |
[105] | GAO J, KONG W X, ZHOU L Y,et al. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chemical Engineering Journal, 2017, 309: 70-79. |
[106] | SHEN D K, CHEN L, YANG J P,et al. Ultradispersed palladium nanoparticles in three-dimensional dendritic mesoporous silica nanospheres: toward active and stable heterogeneous catalysts. ACS Applied Materials & Interfaces, 2015, 7(31): 17450-17459. |
[107] | TEH L P, TRIWAHYONO S, JALIL A A,et al. Fibrous silica mesoporous ZSM-5 for carbon monoxide methanation. Applied Catalysis A General, 2016, 523: 200-208. |
[108] | WU M, KONG L Y, WANG K W,et al. Enantioselective 1,2-reductions of β-trifluoromethylated-α,β-unsaturated ketones to chiral allylic alcohols over organoruthenium-functionalized mesoporous silica nanospheres. Catalysis Science & Technology, 2015, 5(3): 1750-1757. |
[109] | LILLY THANKAMONY A S, LION C, SINGH B,et al. Insights into the catalytic activity of nitridated fibrous silica (KCC-1) nanocatalysts from 15N and 29Si NMR spectroscopy enhanced by dynamic nuclear polarization. Angewandte Chemie International Edition, 2015, 54(7): 2190-2193. |
[110] | DONG Z P, YU G Q, LE X D.Gold nanoparticle modified magnetic fibrous silica microspheres as a highly efficient and recyclable catalyst for the reduction of 4-nitrophenol.New Journal of Chemistry, 2015, 39(11): 8623-8629. |
[111] | DHIMAN M, CHALKE B, POLSHETTIWAR V.Efficient synthesis of monodisperse metal (Rh, Ru, Pd) nanoparticles supported on fibrous nanosilica (KCC-1) for catalysis.ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3224-3230. |
[112] | LE X D, DONG Z P, ZHANG W,et al. Fibrous nano-silica containing immobilized Ni@Au core-shell nanoparticles: a highly active and reusable catalyst for the reduction of 4-nitrophenol and 2-nitroaniline. Journal of Molecular Catalysis A: Chemical, 2014, 395: 58-65. |
[113] | DONG Z P, LE X D, LI X L, ,et al. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Applied Catalysis B: Environmental, 2014, 158/159(1): 129-135. |
[114] | ZHANG J S, ZHANG M W, YANG C,et al. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Advanced Materials, 2014, 26(24): 4121-4126. |
[115] | SADEGHZADEH S M, ZHIANI R, KHOOBI M,et al. Synthesis of 3-acyloxylindolines under mild conditions using tripolyphosphate-grafted KCC-1-NH2. Microporous and Mesoporous Materials, 2018, 257: 147-153. |
[116] | CHEN Z W, ZHAO C Q, JU E G,et al. Design of surface-active artificial enzyme particles to stabilize pickering emulsions for high-performance biphasic biocatalysis. Advanced Materials, 2016, 28(8): 1682-1688. |
[117] | MUNAWEERA I, HONG J, D’SOUZA A,et al. Novel wrinkled periodic mesoporous organosilica nanoparticles for hydrophobic anticancer drug delivery. Journal of Porous Materials, 2015, 22(1): 1-10. |
[118] | CONG Y, LI Q J, CHEN M,et al. Synthesis of dual-stimuli- responsive microcontainers with two payloads in different storage spaces for preprogrammable release. Angewandte Chemie International Edition, 2017, 56(13): 3552-3556. |
[119] | ABOUAITAH K E A, FARGHALI A A. Mesoporous silica materials in drug delivery system: pH/glutathione-responsive release of poorly water-soluble pro-drug quercetin from two and three-dimensional pore-structure nanoparticles. Journal of Nanomedicine and Nanotechnology, 2016, 7(2): 1000360-1-12. |
[120] | TSH A, LEE J H, LEE J J, ,et al.Mesoporous silica with fibrous morphology: a multifunctional core-shell platform for biomedical applications. Nanotechnology, 2013, 24(34): 345603-1-7. |
[121] | MUNAWEERA I, TRINH M, HONG J,et al. Chemically powered nanomotor as a delivery vehicle for biologically relevant payloads. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9063-9071. |
[122] | LI X, CHEN X F, MIAO G H,et al. Synthesis of radial mesoporous bioactive glass particles to deliver osteoactivin gene. Journal of Materials Chemistry B, 2014, 2(40): 7045-7054. |
[123] | XU C, YU M H, NOONAN O,et al. Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein delivery. Small, 2016, 11(44): 5949-5955. |
[124] | WU M Y, MENG Q S, CHEN Y,et al. Gene delivery: large-pore ultrasmall mesoporous organosilica nanoparticles: micelle/precursor co-templating assembly and nuclear-targeted gene delivery. Advanced Materials, 2015, 27(2): 215-222. |
[125] | SUN Z B, GUO D, ZHANG L,et al. Multifunctional fibrous silica composite with high optical sensing performance and effective removal ability toward Hg2+ ions. Journal of Materials Chemistry B, 2015, 3(16): 3201-3210. |
[126] | HUANG W Y, YU X, TANG J P,et al. Enhanced adsorption of phosphate by flower-like mesoporous silica spheres loaded with lanthanum. Microporous and Mesoporous Materials, 2015, 217: 225-232. |
[127] | XIE Y Y, WANG J, WANG M Z,et al. Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution. Journal of Hazardous Materials, 2015, 297: 66-73. |
[128] | YANG J P, CHEN W Y, SHEN D K,et al. Controllable fabrication of dendritic mesoporous silica-carbon nanospheres for anthracene removal. Journal of Materials Chemistry A, 2014, 2(29): 11045-11048. |
[129] | YU H X, ZHANG Q, DAHL M,et al. Dual-pore carbon shells for efficient removal of humic acid from water. Chemistry - A European Journal, 2017, 23(64): 16249-16256. |
[130] | DU X, XING Y, LI X Y,et al. Broadband antireflective superhydrophobic self-cleaning coatings based on novel dendritic porous particles. RSC Advances, 2016, 6(10): 7864-7871. |
[131] | XING Y, DU X, LI X Y,et al. Tunable dendrimer-like porous silica nanospheres: effects of structures and stacking manners on surface wettability. Journal of Alloys and Compounds, 2018, 732: 70-79. |
[132] | PEREIRA C, ALVES C, MONTEIRO A,et al. Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Applied Materials & Interfaces, 2011, 3(7): 2289-2299. |
[133] | LIU Y Y, LIU Q, YU H Y,et al. Polymer-modified fibrous mesoporous silica nanoparticles as coating material for open-tubular capillary electrochromatography. Journal of Chromatography A, 2017, 1499: 196-202. |
[134] | QU Q S, MIN Y, ZHANG L H,et al. Silica microspheres with fibrous shells: synthesis and application in HPLC. Analytical Chemistry, 2015, 87(19): 9631-9638. |
[135] | SUN Z B, LI H Z, GUO D,et al. A multifunctional magnetic core-shell fibrous silica sensing probe for highly sensitive detection and removal of Zn2+ from aqueous solution. Journal of Materials Chemistry C, 2015, 3(18): 4713-4722. |
[136] | CHEN P J, HU S H, HUNG W T,et al. Geometrical confinement of quantum dots in porous nanobeads with ultraefficient fluorescence for cell-specific targeting and bioimaging. Journal of Materials Chemistry, 2012, 22(22): 9568-9575. |
[137] | CHOI Y, KWAK H, HONG S.Quantification of arsenic(III) in aqueous media using a novel hybrid platform comprised of radially porous silica particles and a gold thin film.Analytical Methods, 2014, 6(17): 7054-7061. |
[138] | SINGH B, POLSHETTIWAR V.Design of CO2 sorbents using functionalized fibrous nanosilica (KCC-1): insights into the effect of the silica morphology (KCC-1vs. MCM-41). Journal of Materials Chemistry A, 2016, 4(18): 7005-7019. |
[139] | PATIL U, FIHRI A, EMWAS A H,et al. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO2 capture with excellent stability and regenerability. Chemical Science, 2012, 3(7): 2224-2229. |
[140] | YAMAMOTO E, MORI S, SHIMOJIMA A,et al. Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method. Nanoscale, 2017, 9(7): 2464-2470. |
[141] | ZHANG H J, LI Z Y, XU P P,et al. A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release. Chemical Communications, 2010, 46(36): 6783-6785. |
[142] | PARK D S, YUN D, KIM T Y,et al. A mesoporous carbon- supported Pt nanocatalyst for the conversion of lignocellulose to sugar alcohols. ChemSusChem, 2013, 6(12): 2281-2289. |
[143] | KANG J S, LIM J, RHO W Y, ,et al. Wrinkled silica/titania nanoparticles with tunable interwrinkle distances for efficient utilization of photons in dye-sensitized solar cells. Scientific Reports, 2016, 6: 30829-1-14. |
[144] | YUE Q, LI J, LUO W,et al. An interface coassembly in biliquid phase: toward core-shell magnetic mesoporous silica microspheres with tunable pore size. Journal of the American Chemical Society, 2015, 137(41): 13282-13289. |
[145] | LI N, NIU D C, JIANG Y,et al. Morphology evolution and spatially selective functionalization of hierarchically porous silica nanospheres for improved multidrug delivery. Chemistry of Materials, 2017, 29(24): 10377-10385. |
[146] | TENG Z G, SU X D, ZHENG Y X,et al. A facile multi-interface transformation approach to monodisperse multiple-shelled periodic mesoporous organosilica hollow spheres. Journal of the American Chemical Society, 2015, 137(24): 7935-7944. |
[147] | YANG J P, SHEN D K, ZHOU L,et al. Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chemistry of Materials, 2013, 25(15): 3030-3037. |
[148] | FIRMANSYAH M L, JALIL A A, TRIWAHYONO S, et al. Synthesis and characterization of fibrous silica ZSM-5 for cumene hydrocracking. Catalysis Science & Technology, 2016(6): 5178-5182. |
[149] | DU X, HE J.Spherical silica micro/nanomaterials with hierarchical structures: synthesis and applications.Nanoscale, 2011, 3(10): 3984-4002. |
[150] | XU Z H, LI C X, KANG X J,et al. Synthesis of a multifunctional nanocomposite with magnetic, mesoporous, and near-IR absorption properties. Journal of Physical Chemistry C, 2010, 114(39): 16343-16350. |
[151] | LIU P C, YU Y J, PENG B,et al. A dual-templating strategy for the scale-up synthesis of dendritic mesoporous silica nanospheres. Green Chemistry, 2017, 19(23): 5575-5581. |
[152] | ZHANG A F, GU L, HOU K K,et al. Mesostructure-tunable and size-controllable hierarchical porous silica nanospheres synthesized by aldehyde-modified Stöber method. RSC Advances, 2015, 5(72): 58355-58362. |
[153] | SADEGHZADEH S M.A green approach for the synthesis of 2-oxazolidinones using gold(I) complex immobilized on KCC-1 as nanocatalyst at room temperature.Applied Organometallic Chemistry, 2016, 30(10): 835-842. |
[154] | SEO B, LEE C, YOO D,et al. A magnetically recoverable photocatalyst prepared by supporting TiO2 nanoparticles on a superparamagnetic iron oxide nanocluster core@fibrous silica shell nanocomposite. RSC Advances, 2017, 7(16): 9587-9595. |
[155] | ABBARAJU P L, YANG Y Y, YU M H,et al. Core-shell-structured dendritic mesoporous silica nanoparticles for combined photodynamic therapy and antibody delivery. Chemistry-An Asian Journal, 2017, 12(13): 1465-1469. |
[156] | MEKA A K, ABBARAJU P L, SONG H,et al. A vesicle supra- assembly approach to synthesize amine-functionalized hollow dendritic mesoporous silica nanospheres for protein delivery. Small, 2016, 12(37): 5169-5177. |
[157] | ABBARAJU P L, JAMBHRUNKAR M, YANG Y,et al. Asymmetric mesoporous silica nanoparticles as potent and safe immunoadjuvants provoke high immune responses. Chemical Communications, 2018, 54(16): 2020-2023. |
[158] | ABBARAJU P L, MEKA A K, SONG H,et al. Asymmetric silica nanoparticles with tunable head-tail structures enhance hemocompatibility and maturation of immune cells. Journal of the American Chemical Society, 2017, 139(18): 6321-6328. |
[159] | DU X, ZHAO C X, LUAN Y,et al. Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability. Journal of Materials Chemistry A, 2017, 5(40): 21560-21569. |
[160] | ZHENG Y J, WANG D D, LI Z K,et al. Laccase biosensor fabricated on flower-shaped yolk-shell SiO2 nanospheres for catechol detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 202-209. |
[161] | GAO J, WANG Y, DU Y J,et al. Construction of biocatalytic colloidosome using lipase-containing dendritic mesoporous silica nanospheres for enhanced enzyme catalysis. Chemical Engineering Journal, 2017, 317(315): 175-186. |
[162] | REN H, CHEN S, JIN Y,et al. A traceable and bone-targeted nanoassembly based on defect-related luminescent mesoporous silica for enhanced osteogenic differentiation. Journal of Materials Chemistry B, 2017, 5(8): 1585-1593. |
[163] | HUANG L, LIAO T, WANG J, ,et al. Brilliant pitaya-type silica colloids with central-radial and high-density quantum dots incorporation for ultrasensitive fluorescence immunoassays. Advanced Functional Materials, 2018, 28(4): 1705380-1-11. |
[164] | CHIU H Y, GÖßL D, HADDICK L,et al. Clickable multifunctional large-pore mesoporous silica nanoparticles as nanocarriers. Chemistry of Materials, 2018, 30(3): 644-654. |
[165] | KIENZLE A, KURCH S, SCHL DER J, ,et al. Dendritic mesoporous silica nanoparticles for pH-stimuli-responsive drug delivery of TNF-Alpha. Advanced Healthcare Materials, 2017, 6(13): 1700012-1-9. |
[166] | CALIFANO V, SANNINO F, COSTANTINI A,et al. Wrinkled silica nanoparticles: efficient matrix for β-glucosidase immobilization. The Journal of Physical Chemistry C, 2018, 122(156): 8373-8379. |
[167] | XU J, ZHANG J Y, PENG H G,et al. Ag supported on meso- structured SiO2 with different morphologies for CO oxidation: on the inherent factors influencing the activity of Ag catalysts. Microporous and Mesoporous Materials, 2017, 242: 90-98. |
[168] | SHENG Y, ZENG H C.Monodisperse aluminosilicate spheres with tunable Al/Si ratio and hierarchical macro-meso-microporous structure.ACS Applied Materials & Interfaces, 2015, 7(24): 13578-13589. |
[169] | YANG Y N, LU Y, ABBARAJU P L,et al. Multi-shelled dendritic mesoporous organosilica hollow spheres: roles of composition and architecture in cancer immunotherapy. Angewandte Chemie International Edition, 2017, 56(29): 8446-8450. |
[1] | 李雪渊,王宏刚,田柱,朱建辉,刘影,贾兰,尤东江,李向明,康利涛. 一种用于长寿命水系锌锰电池的海藻酸钠/二氧化硅准凝胶复合电解质[J]. 无机材料学报, 2020, 35(8): 909-915. |
[2] | 李远洋,江波. 具有超亲水光催化性能的λ/4-λ/2型两层宽频增透膜的制备和性能研究[J]. 无机材料学报, 2019, 34(2): 159-163. |
[3] | 何前军, 陈丹阳, 范明俭. 精准纳米气体治疗研究进展[J]. 无机材料学报, 2018, 33(8): 811-824. |
[4] | 宋晶晶, 陈波, 林开利. 核壳结构羟基磷灰石/介孔二氧化硅纳米颗粒的制备及其药物释放研究[J]. 无机材料学报, 2018, 33(6): 623-628. |
[5] | 白家峰, 王希庆, 陈义昌, 邓勇辉, 李志华, 刘 鸿, 刘绍华. 聚多巴胺修饰的介孔二氧化硅微球的合成及其用于负载左旋薄荷醇凉味剂[J]. 无机材料学报, 2017, 32(8): 845-850. |
[6] | 马洪兵, 白 华, 薛 晨, 陶鹏飞, 徐群峰, 江 南. 一种链珠状SiO2纳米线的制备及分析[J]. 无机材料学报, 2016, 31(5): 523-528. |
[7] | 宋聪, 喻晓蔚, 钱丹, 孙振忠, 江波. KH560修饰的溶胶-凝胶法二氧化硅载体用于脂肪酶的固定化[J]. 无机材料学报, 2016, 31(3): 311-316. |
[8] | 孙志娟, 陈雪莲, 蒋春跃. 自组装法制备中空二氧化硅纳米粒子减反射薄膜[J]. 无机材料学报, 2014, 29(9): 947-955. |
[9] | 盛 晨, 于 云, 于 洋, 米 乐, 唐根初, 宋力昕. 基于二氧化硅气凝胶制备的多层隔热材料微观结构及热性能研究[J]. 无机材料学报, 2013, 28(7): 790-794. |
[10] | 张 倩, 单 锋, 陆学民, 路庆华. 金纳米线-介孔二氧化硅薄膜的制备和非线性光学性能研究[J]. 无机材料学报, 2013, 28(10): 1087-1092. |
[11] | 郭 风, 朱桂茹, 高从堦. 氰基功能化介孔二氧化硅的制备与表征[J]. 无机材料学报, 2012, 27(2): 134-138. |
[12] | 张丽杰, 谷景华, 姚红英, 张 跃. 二氧化硅基多孔块材的制备及其热稳定性[J]. 无机材料学报, 2011, 26(9): 949-954. |
[13] | 李 臻, 王树彬. 粒径及壁厚可控的二氧化硅空心微球的研究[J]. 无机材料学报, 2011, 26(8): 885-891. |
[14] | 王 巍, 李晓天. 以多孔阳极氧化铝膜为模板制备介孔二氧化硅纳米纤维[J]. 无机材料学报, 2010, 25(12): 1277-1280. |
[15] | 魏娜娜, 韦 奇, 李振杰, 李群艳, 聂祚仁. 铜掺杂二氧化硅膜的制备及孔结构研究[J]. 无机材料学报, 2010, 25(10): 1047-1052. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||