无机材料学报 ›› 2018, Vol. 33 ›› Issue (10): 1136-1140.DOI: 10.15541/jim20170532
所属专题: 光催化材料与技术
江峰1,2, 于云2, 冯爱虎1,2, 于洋1, 米乐1, 宋力昕1
收稿日期:
2017-11-13
出版日期:
2018-10-20
网络出版日期:
2018-09-25
作者简介:
江峰. E-mail: 437432167@qq.com
JIANG Feng1,2, YU Yun1, FENG Ai-Hu1,2, YU Yang1, MI Le1, SONG Li-Xin1
Received:
2017-11-13
Published:
2018-10-20
Online:
2018-09-25
About author:
JIANG Feng (1990?), male, candidate of PhD. E-mail: 437432167@qq.com
Supported by:
摘要:
采用非水沉淀工艺制备了锐钛矿型纳米氧化钛(TiO2)。在冰醋酸的催化作用下, 钛酸丁酯在乙醇中发生非水解反应。冰醋酸的引入增加了钛酸丁酯中Ti-O键和C-O键的极性, 进而促进其在溶剂乙醇中发生非水解脱醚缩聚反应形成Ti-O-Ti键合。经过80℃回流24 h, Ti-O-Ti键重排形成锐钛矿型纳米TiO2。其粒径为5~20 nm; 比表面积为169.4 m2/g。非水沉淀法制备的纳米氧化钛分散性良好, 光催化性能优异。紫外光照2 h, 纳米氧化钛对甲基橙的降解率达99.81%, 具有良好的污水处理应用前景。
中图分类号:
江峰, 于云, 冯爱虎, 于洋, 米乐, 宋力昕. 非水沉淀法制备纳米氧化钛及其光催化性能研究[J]. 无机材料学报, 2018, 33(10): 1136-1140.
JIANG Feng, YU Yun, FENG Ai-Hu, YU Yang, MI Le, SONG Li-Xin. Anatase TiO2 Nanoparticles: Facile Synthesis via Non-aqueous Precipitation and Photocatalytic Property[J]. Journal of Inorganic Materials, 2018, 33(10): 1136-1140.
Ti(OBu)4 | Ti(OBu)4 + AcOH | Precipitate slurry | Precipitate | Attribution | Ref. |
---|---|---|---|---|---|
3334 | - | 3334 | - | OH | [19] |
2958 | 2958 | 2958 | - | C-H | [20] |
2933 | 2933 | 2933 | - | aromatic C-C | [21] |
2873 | 2873 | 2873 | - | C-H | [20] |
2700 | - | - | - | C-H | [20] |
1460 | - | - | - | -CH2 | [22] |
1379 | 1419 | - | - | -CH3 | [22] |
1124 | - | - | - | Ti-O-C | [23] |
1096 | - | - | - | Ti-O-C | [23] |
1039 | - | - | - | Ti-O-C- | [23] |
611 | 613 | - | - | Ti-O | [24] |
- | 1724 | 1735 | - | -C==O | [25] |
- | 1547 | - | - | COO-group | [26] |
- | 1290 | - | - | C-O | [27] |
- | 1070 | 1074 | - | C-O | [28] |
- | 1028 | 1045 | - | C-O | [29] |
- | - | 1458 | - | CH2 | [30] |
- | - | 1378 | - | Sym COO | [31] |
- | - | 1189 | - | C-O | [32] |
- | - | 881 | - | C-COO | [31] |
- | - | 438 | 455 | Ti-O-Ti | [33] |
Table 1 Peak position of samples at different reaction stages (cm-1)
Ti(OBu)4 | Ti(OBu)4 + AcOH | Precipitate slurry | Precipitate | Attribution | Ref. |
---|---|---|---|---|---|
3334 | - | 3334 | - | OH | [19] |
2958 | 2958 | 2958 | - | C-H | [20] |
2933 | 2933 | 2933 | - | aromatic C-C | [21] |
2873 | 2873 | 2873 | - | C-H | [20] |
2700 | - | - | - | C-H | [20] |
1460 | - | - | - | -CH2 | [22] |
1379 | 1419 | - | - | -CH3 | [22] |
1124 | - | - | - | Ti-O-C | [23] |
1096 | - | - | - | Ti-O-C | [23] |
1039 | - | - | - | Ti-O-C- | [23] |
611 | 613 | - | - | Ti-O | [24] |
- | 1724 | 1735 | - | -C==O | [25] |
- | 1547 | - | - | COO-group | [26] |
- | 1290 | - | - | C-O | [27] |
- | 1070 | 1074 | - | C-O | [28] |
- | 1028 | 1045 | - | C-O | [29] |
- | - | 1458 | - | CH2 | [30] |
- | - | 1378 | - | Sym COO | [31] |
- | - | 1189 | - | C-O | [32] |
- | - | 881 | - | C-COO | [31] |
- | - | 438 | 455 | Ti-O-Ti | [33] |
Fig. 6 Photodegradation effect of TiO2 nanoparticles(a) UV-Vis absorption spectra of MO solutions after photocatalytic performance test at different time intervals; (b) Photodegradation rate of MO after photocatalysis by TiO2 nanoparticles and commercial P25 powders
[1] | KHAN S U M, AL S M, INGLER W B. Efficient photochemical water splitting by a chemically modifiedn-TiO2. Science, 2002, 297(5590): 2243-2245. |
[2] | BACH U, LUPO D, COMTE P,et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electronconversion efficiencies. Nature, 1998, 395(6702): 583-585. |
[3] | GAYA U I, ABDULLAH A H.Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems.Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2006, 9(1): 1-12. |
[4] | JUNG K Y, PARK S B, JANG H D.Phase control and photocatalytic properties of nano-sized titania particles by gas-phase pyrolysis of TiCl4.Catalysis Communications, 2004, 5(9): 491-497. |
[5] | LOOK J L, ZUKOSKI C F.Alkoxide-derived titania particles: use of electrolytes to control size and agglomeration levels.Journal of the American Ceramic Society, 2010, 75(6): 1587-1595. |
[6] | JIANG H Q, WANG P, GUO X L,et al. Preparation and characterization of low-amount Yb3+-doped TiO2 photocatalyst. Russian Chemical Bulletin, 2006, 55(10): 1743-1747. |
[7] | GUO Y G, HU Y S, SIGLE W.Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Advanced Materials, 2007, 19(16): 2087-2091. |
[8] | ADDAMO M, AUGUGLIARO V, PAOLA A D,et al. Preparation, characterization, and photoactivity of polycrystalline nanostructured TiO2 catalysts. The Journal of Physical Chemistry A, 2004, 35(21): 3303-3310. |
[9] | SUGIMOTO T, ZHOU X, MURAMATSU A.Synthesis of uniform anatase TiO2 nanoparticles by Gel-Sol method 4. Shape control.Journal of Colloid and Interface Science, 2003, 259(1): 53-61. |
[10] | SUGIMOTO T, ZHOU X, MURAMATSU A.Synthesis of uniform anatase TiO2 nanoparticles by Gel-Sol method. 3. Formation process and size control.Journal of Colloid and Interface Science, 2003, 259(1): 43-52. |
[11] | ZHANG Y X, LI G H, JIN Y X.Hydrothermal synthesis and photoluminescence of TiO2 nanowires.Chemical Physics Letters, 2002, 365(3/4): 300-304. |
[12] | HE W, FANG Z, ZHANG K,et al. Continuous synthesis of a co-doped TiO2 photocatalyst and its enhanced visible light catalytic activity using a photocatalysis microreactor. RSC Advances, 2015, 5(68): 54853-54860. |
[13] | REYES C D, RODRÍGUEZ G G, ESPINOSA P M E,et al. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008, 19(14): 1-10. |
[14] | CHAN S K, KOICHI N, BIN X,et al. A new observation on the phase transformation of TiO2 nanoparticles produced by a CVD method. Aerosol Science & Technology, 2005, 39(2): 104-112. |
[15] | FENG Q, WANG T, ZHANG F, et al. Synthesis of TiO2 photocatalytic materials via solid-state reaction and its photodegradation property for methyl orange. Material Research Innovations, 2015, 18(S4): 92-96. |
[16] | BANNIER E, DARUT G, SÁNCHEZ E,et al. Microstructure and photocatalytic activity of suspension plasma sprayed TiO2 coatings on steel and glass substrates. Surface & Coatings Technology, 2011, 206(2/3): 378-386. |
[17] | ZHU J, BIAN Z F, REN J,et al. An integrated low temperature approach to highly photoactive nanocrystalline mesostructured titania. Catalysis Communications, 2007, 8(7): 971-976. |
[18] | ZHU J, YANG J, BIAN Z F,et al. Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic Sol-Gel reaction of TiCl4 and benzyl alcohol. Applied Catalysis B Environmental, 2007, 76(1): 82-91. |
[19] | PIRES D C, STOCKLERPINTO D V B, SCIAMARELI J,et al. Synthesis and characterization by infrared spectroscopy of hydantoin-based bonding agents, used in composite propellants. Journal of Aerospace Technology & Management, 2009, 1(2): 177-184. |
[20] | MAX J J, DANEAULT S, CHAPADOS C.1-Propanol hydrate by IR spectroscopy.Canadian Journal of Chemistry, 2002, 80(1): 113-123. |
[21] | JULKAPLI N M, AHMAD Z, AKIL H M.Preparation and characterization of 1,2,4,5-benzenetetra carboxylic-chitosan. E-Polymers, 2010, 10(1): 841-857. |
[22] | ENESCU D, FRACHE A.Effects of sterically hindered N-alkoxyamines on photooxidative stability of reinforced polypropylene. E-Polymers, 2013, 12(1): 949-959. |
[23] | VELASCO M J, RUBIO F, RUBIO J.Hydrolysis of titanium tetrabutoxide. study by FT-IR spectroscopy.Spectroscopy Letters, 1999, 32(2): 289-304. |
[24] | HWANG J D, CHOU C H.On the origin of leakage current reduction in TiO2 passivated porosus silicon Schottky-barrier diode. Applied Physics Letters, 2010, 96(6): 063501-063503. |
[25] | URBAN M W, KOENIG J L, SHIH L B,et al. Structure of styrene/acrylic acid copolymer in aqueous solution determined by Fourier transform infrared spectroscopy. Applied Spectroscopy, 1987, 41(4): 590-596. |
[26] | FUGU M B, NDAHI N P, PAUL B B,et al. Synthesis, characterization, and antimicrobial studies of some vanillin schiff base metal (ii) complexes. Journal of Chemical & Pharmaceutical Research, 2013, 5(1): 22-28. |
[27] | ZHANG W, ZHANG H, XIAO J,et al. Carbon nanotube catalyst for oxidative desulfurization of a model diesel fuel using molecular oxygen. Green Chemistry, 2013, 16(1): 211-220. |
[28] | GEIGER C, ZELENKA C, WEIGL M,et al. Synthesis of bicyclic sigma receptor ligands with cytotoxic activity. Journal of Medicinal Chemistry, 2007, 50(24): 6144-6153. |
[29] | SUN S L, WEN J L, MA M G,et al. Successive alkali extraction and structural characterization of hemicelluloses from sweet sorghum stem. Carbohydr. Polym., 2013, 92(2): 2224-2231. |
[30] | NIKODEM K, GRAŻYNA S G, LIDIA O,et al. A study on the synthesis and properties of substituted EHBG-Fe(iii) complexes as potential MRI contrast agents. Journal of Organometallic Chemistry, 2014, 769(1): 100-105. |
[31] | CHOE J I, KIM G H.Ab initio study of vibrational spectra of p-tert-butylcalix[4]aryl ester complexed with alkali metal cation. Journal of the Korean Chemical Society, 2006, 50(1): 7-13. |
[32] | SUGIHARTO A B, JOHNSON C M, DUNLOP I E,et al. Delocalized surface modes reveal three-dimensional structures of complex biomolecules. Journal of Physical Chemistry C, 2008, 112(20): 7531-7534. |
[33] | LI Z, HOU B, XU Y,et al. Comparative study of Sol-Gel- hydrothermal and Sol-Gel synthesis of titania-silica composite nanoparticles. Journal of Solid State Chemistry, 2005, 178(5): 1395-1405. |
[34] | LIANG C Y, KRIMM S.Infrared spectra of high polymers: Part IX. Polyethylene terephthalate.Journal of Molecular Spectroscopy, 1959, 3(1-6): 554-574. |
[35] | ZHANG L, LI H, LIU Y,et al. Adsorption-photocatalytic degradation of methyl orange over a facile one-step hydrothermally synthesized TiO2/ZnO-NH2-RGO nanocomposite. RSC Advances, 2014, 4(89): 48703-48711. |
[1] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[2] | 吕庆洋, 张玉亭, 顾学红. 超声辅助溶胶-凝胶法制备中空纤维TiO2超滤膜[J]. 无机材料学报, 2022, 37(10): 1051-1057. |
[3] | 肖翔, 郭少柯, 丁成, 张志洁, 黄海瑞, 徐家跃. CsPbBr3@TiO2核壳结构纳米复合材料用作水稳高效可见光催化剂[J]. 无机材料学报, 2021, 36(5): 507-512. |
[4] | 席文, 李海波. TiO2/Ti3C2Tx复合材料的制备及其杂化电容脱盐特性的研究[J]. 无机材料学报, 2021, 36(3): 283-291. |
[5] | 刘彩, 刘芳, 黄方, 王晓娟. 海藻基CDs-Cu-TiO2复合材料的制备及其光催化性能[J]. 无机材料学报, 2021, 36(11): 1154-1162. |
[6] | 李翠霞, 孙会珍, 金海泽, 史晓, 李文生, 孔文慧. 3D多级孔rGO/TiO2复合材料的构筑及其光催化性能研究[J]. 无机材料学报, 2021, 36(10): 1039-1046. |
[7] | 赵宇鹏,贺勇,张敏,史俊杰. 新型二维Zr2CO2/InS异质结可见光催化产氢性能的第一性原理研究[J]. 无机材料学报, 2020, 35(9): 993-998. |
[8] | 王苹,李心宇,时占领,李海涛. Ag与Ag2O协同增强TiO2光催化制氢性能的研究[J]. 无机材料学报, 2020, 35(7): 781-788. |
[9] | 季邦, 赵文锋, 段洁利, 马立哲, 付兰慧, 杨洲. 泡沫镍网负载TiO2/WO3薄膜对乙烯的光催化降解[J]. 无机材料学报, 2020, 35(5): 581-588. |
[10] | 王旭聪, 邓浩, 姜忠义, 袁立永. 不同N源无定形TiO2/g-C3N4光催化还原Re(VII)性能[J]. 无机材料学报, 2020, 35(12): 1340-1348. |
[11] | 刘金云, 张玉亭, 洪周, 刘华, 王圣贤, 顾学红. 共挤出法制备双层中空纤维陶瓷复合膜[J]. 无机材料学报, 2020, 35(12): 1333-1339. |
[12] | 陈浩禹, 张亦文, 吴忠, 秦真波, 吴姗姗, 胡文彬. 强磁靶共溅射法制备具有室温磁电阻特性的Co-TiO2纳米复合薄膜[J]. 无机材料学报, 2020, 35(11): 1263-1267. |
[13] | 焦思怡, 葛万银, 殷立雄, 徐美美, 常哲, 张荔. 新型二维TiSe2纳米片的可控合成及其生长机理[J]. 无机材料学报, 2019, 34(8): 834-838. |
[14] | 吕喜庆, 张环宇, 李瑞, 张梅, 郭敏. Nb2O5包覆对TiO2纳米阵列/上转换发光复合结构柔性染料敏化太阳能电池性能的影响[J]. 无机材料学报, 2019, 34(6): 590-598. |
[15] | 简刚, 刘美瑞, 张晨, 邵辉. 用于高介电复合材料的全包裹Ag@TiO2填充颗粒的制备[J]. 无机材料学报, 2019, 34(6): 641-645. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||