[1] |
PENG Z Q, FREUNBERGER S A, CHEN Y H, et al. A reversible and higher-rate LiO2 battery. Science, 2012, 337(6094): 563-566.
|
[2] |
GIRISHKUMAR G, MCCLOSKEY B, LUNTZ A C, et al. Lithium- air battery: promise and challenges. Journal of Physical Chemistry Letters, 2010, 1(14): 2193-2203.
|
[3] |
SHAO Y Y, DING F, XIAO J et al. Making Li-air batteries rechargeable: material challenges. Advanced Functional Materials, 2013, 23(8): 987-1004.
|
[4] |
LI F J, ZHANG T, ZHOU H S.Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes.Energy & Environmental Science, 2013, 6(4): 1125-1141.
|
[5] |
CHRISTENSEN J, ALBERTUS P, SANCHEZ-CARRERA R S, et a. A critical review of Li/Air batteries. Journal of the Electrochemical Society, 2012, 159(2): R1-R30.
|
[6] |
JUNG H G, HASSOUN J, PARK J B, et al. An improved high-performance lithium-air battery. Nature Chemistry, 2012, 4(7): 579-585.
|
[7] |
CHENG H, SCOTT K.Selection of oxygen reduction catalysts for rechargeable lithium-air batteries-metal or oxide?Applied Catalysis B-Environmental, 2011, 108(1/2): 140-151.
|
[8] |
WANG L, ZHAO X, LU Y H, et al. CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. Journal of the Electrochemical Society, 2011, 158(12): A1379-A1382.
|
[9] |
YANG W, SALIM J, LI S A, et al. Perovskite Sr0.95Ce0.05CoO3-δ loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. Journal of Materials Chemistry, 2012, 22(36): 18902-18907.
|
[10] |
DEBART A, BAO J, ARMSTRONG G, et al. An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. Journal of Power Sources, 2007, 174(2): 1177-1182.
|
[11] |
DEBART A, PATERSON A J, BAO J, et al. α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angewandte Chemie-International Edition, 2008, 47(24): 4521-4524.
|
[12] |
THAPA A K, SAIMEN K, ISHIHARA T.Pd/MnO2 air electrode catalyst for rechargeable lithium/air battery.Electrochemical and Solid State Letters, 2010, 13(11): A165-A167.
|
[13] |
LU Y C, XU Z C, GASTEIGER H A,et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. Journal of the American Chemical Society, 2010, 132(35): 12170-12171.
|
[14] |
LI P F, ZHANG J K, YU Q L, et al. One-dimensional porous La0.5Sr0.5CoO2. 91 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Electrochimica Acta, 2015, 165: 78-84.
|
[15] |
KALUBARME R S, PARK G E, JUNG K N, et al. LaNixCo1-xO3-δ perovskites as catalyst material for non-aqueous lithium-oxygen batteries. Journal of the Electrochemical Society, 2014, 161(6): A880-A889.
|
[16] |
SUN N, LIU H X, YU Z Y, et al. The La0.6Sr0.4CoO3 perovskite catalyst for Li-O2 battery. Solid State Ionics, 2014, 268: 125-130.
|
[17] |
ZHONG L, MITCHELL R R, LIU Y, et al. In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Letters, 2013, 13(5): 2209-2214.
|
[18] |
LEI Y, LU J, LUO X, et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. Nano Letters, 2013, 13(9): 4182-4189.
|
[19] |
MA S, WU Y, WANG J, et al. Reversibility of noble metal- catalyzed aprotic Li-O2 batteries. Nano Letters, 2015, 15(12): 8084-8090.
|
[20] |
KRESSE G, FURTHMULLER J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15-50.
|
[21] |
KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186.
|
[22] |
SETYAWAN W, CURTAROLO S.High-throughput electronic band structure calculations: challenges and tools.Computational Materials Science, 2010, 49(2): 299-312.
|
[23] |
REUTER K, SCHEFFLER M.Composition, structure,stability of RuO2 (110) as a function of oxygen pressure. Physical Review B, 2001, 65(3): 035406-1-11.
|
[24] |
REUTER K, SCHEFFLER M.Composition and structure of the RuO2 (110) surface in an O2 and CO environment: implications for the catalytic formation of CO2. Physical Review B, 2003, 68(4): 045407-1-11.
|
[25] |
REUTER K, SCHEFFLER M. First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Physical Review Letters, 2003, 90(4): 046103-1-4.
|
[26] |
ZHANG W, SMITH J R, WANG X G. Thermodynamics from ab initio computations. Physical Review B, 2004, 70(2): 024103-1-8.
|
[27] |
MO Y, ONG S P, CEDER G. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery. Physical Review B, 2011, 84(20): 205446-1-9.
|
[28] |
WEAVER J F, CHEN J J, GERRARD A L.Oxidation of Pt(111) by gas-phase oxygen atoms.Surface Science, 2005, 592(1/2/3): 83-103.
|
[29] |
PHATAK A A, DELGASS W N, RIBEIRO F H, et al Density functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and Pt. The Journal of Physical Chemistry C, 2009, 113(17): 7269-7276.
|
[30] |
WU C, SCHMIDT D J, WOLVERTON C,et al. Accurate coverage-dependence incorporated into first-principles kinetic models: catalytic NO oxidation on Pt(111). Journal of Catalysis, 2012, 286: 88-94.
|
[31] |
TODOROVA M, REUTER K, SCHEFFLER M. Density- functional theory study of the initial oxygen incorporation in Pd (111). Physical Review B, 2005, 71(19): 195403-1-8.
|
[32] |
REN X, ZHU J, DU F, et al. B-doped graphene as catalyst to improve charge rate of lithium air battery. Journal of Physical Chemistry C, 2014, 118(39): 22412-22418.
|