无机材料学报 ›› 2018, Vol. 33 ›› Issue (10): 1046-1058.DOI: 10.15541/jim20170594
所属专题: 介电储能陶瓷
杜红亮1, 杨泽田1, 高峰2, 靳立3, 程花蕾4, 屈绍波1
收稿日期:
2017-12-12
修回日期:
2018-02-06
出版日期:
2018-10-20
网络出版日期:
2018-09-25
基金资助:
DU Hong-Liang1, YANG Ze-Tian1, GAO Feng2, JIN Li3, CHENG Hua-Lei4, QU Shao-Bo1
Received:
2017-12-12
Revised:
2018-02-06
Published:
2018-10-20
Online:
2018-09-25
Supported by:
摘要:
相对于聚合物等储能介质材料, 介电陶瓷具有温度稳定性好和循环寿命长的优点, 是制备脉冲功率储能电容器的优秀候选材料。但目前介电陶瓷的储能密度相对较低, 不能满足脉冲功率设备小型化的要求。因此, 如何显著提高介电陶瓷的储能密度成为近年来功能陶瓷研究的热点之一。本文首先介绍了介电储能电容器对陶瓷材料性能的要求, 然后结合本课题组的研究工作, 评述了BaTiO3基、BiFeO3基、(K0.5Na0.5)NbO3基无铅弛豫铁电陶瓷和 (Bi0.5Na0.5)TiO3基、AgNbO3基无铅反铁电陶瓷储能特性的研究现状, 重点阐述了不同材料体系的组分设计思路及相关储能特性, 分析了无铅非线性介电储能陶瓷所面临的机遇和挑战, 指出了应对策略。最后, 展望了下一步的研究方向和内容。
中图分类号:
杜红亮, 杨泽田, 高峰, 靳立, 程花蕾, 屈绍波. 无铅非线性介电储能陶瓷: 现状与挑战[J]. 无机材料学报, 2018, 33(10): 1046-1058.
DU Hong-Liang, YANG Ze-Tian, GAO Feng, JIN Li, CHENG Hua-Lei, QU Shao-Bo. Lead-free Nonlinear Dielectric Ceramics for Energy Storage Applications: Current Status and Challenges[J]. Journal of Inorganic Materials, 2018, 33(10): 1046-1058.
Materials | Eb/(kV·cm-1) | ΔP/(µC·cm-2) | Wrec/(J·cm-3) | η/% | Ref. |
---|---|---|---|---|---|
0.7BaTiO3-0.3BiScO3 | 225 | 25 | 2.3 | - | [48] |
0.8(0.6 BaTiO3-0.4BiScO3)-0.2(K1/2Bi1/2)TiO3 | 220 | ~33.5 | 4.0 | - | [50] |
0.91BaTiO3-0.09BiYbO3 | 93 | ~17 | 0.71 | ~87 | [52] |
0.9BaTiO3-0.1Bi(Mg2/3Nb1/3)O3 | 143.5 | ~15 | 1.13 | ~96 | [51] |
0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 | 224 | ~19 | 1.81 | ~88 | [23] |
0.85BaTiO3-0.15Bi(Zn2/3Nb1/3)O3 | 131 | 7.9 | 0.79 | 93.5 | [53] |
0.88BaTiO3-0.12Bi(Li1/2Nb1/2)O3 | 270 | 13.35 | 2.032 | 88 | [54] |
0.9BaTiO3-0.1Bi(Zn1/2Zr1/2)O3 | 264 | 22.1 | 2.46 | - | [55] |
表1 一些代表性的BT基陶瓷的储能性能
Table 1 Energy storage performance of some representative BT-based ceramics
Materials | Eb/(kV·cm-1) | ΔP/(µC·cm-2) | Wrec/(J·cm-3) | η/% | Ref. |
---|---|---|---|---|---|
0.7BaTiO3-0.3BiScO3 | 225 | 25 | 2.3 | - | [48] |
0.8(0.6 BaTiO3-0.4BiScO3)-0.2(K1/2Bi1/2)TiO3 | 220 | ~33.5 | 4.0 | - | [50] |
0.91BaTiO3-0.09BiYbO3 | 93 | ~17 | 0.71 | ~87 | [52] |
0.9BaTiO3-0.1Bi(Mg2/3Nb1/3)O3 | 143.5 | ~15 | 1.13 | ~96 | [51] |
0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 | 224 | ~19 | 1.81 | ~88 | [23] |
0.85BaTiO3-0.15Bi(Zn2/3Nb1/3)O3 | 131 | 7.9 | 0.79 | 93.5 | [53] |
0.88BaTiO3-0.12Bi(Li1/2Nb1/2)O3 | 270 | 13.35 | 2.032 | 88 | [54] |
0.9BaTiO3-0.1Bi(Zn1/2Zr1/2)O3 | 264 | 22.1 | 2.46 | - | [55] |
Materials | Compositions | Marterial forms | Eb/(kV·cm-1) | ΔP/(µC·cm-2) | Wrec/(J·cm-3) | η/% | Ref. |
---|---|---|---|---|---|---|---|
BF-BT | 0.7(0.65BF-0.35BT)-0.3Nb2O5 | Bulk | 90 | 19.68 | 0.71 | - | [60] |
0.61BF-0.33BT-0.06La(Mg1/2Ti1/2)O3 | Bulk | 130 | 33.3 | 1.66 | 82 | [61] | |
0.61BF-0.33BT-0.06Ba(Mg1/3Nb2/3)O3 | Bulk | 125 | 32.3 | 1.56 | 75 | [62] | |
BF-ST | 0.4BF-0.6ST | Thick film | 420 | - | 6 | - | [64] |
0.4BF-0.6ST+0.5%MnO2 | Thin film | 3600 | ~38 | ~51 | 64 | [65] |
表2 一些BF基陶瓷的储能性能
Table 2 Energy storage properties of some BF-based ceramics
Materials | Compositions | Marterial forms | Eb/(kV·cm-1) | ΔP/(µC·cm-2) | Wrec/(J·cm-3) | η/% | Ref. |
---|---|---|---|---|---|---|---|
BF-BT | 0.7(0.65BF-0.35BT)-0.3Nb2O5 | Bulk | 90 | 19.68 | 0.71 | - | [60] |
0.61BF-0.33BT-0.06La(Mg1/2Ti1/2)O3 | Bulk | 130 | 33.3 | 1.66 | 82 | [61] | |
0.61BF-0.33BT-0.06Ba(Mg1/3Nb2/3)O3 | Bulk | 125 | 32.3 | 1.56 | 75 | [62] | |
BF-ST | 0.4BF-0.6ST | Thick film | 420 | - | 6 | - | [64] |
0.4BF-0.6ST+0.5%MnO2 | Thin film | 3600 | ~38 | ~51 | 64 | [65] |
Materials systems | Grain size/µm | Eb/(kV·cm-1) | ΔP/(µC·cm-2) | Wrec/(J·cm-3) | η/% | Ref. |
---|---|---|---|---|---|---|
KNN | 2.26 | 40 | 5 | - | - | [85] |
0.8KNN-0.2SSN | 0.5 | 295 | 13.8 | 2.02 | 81.4 | [84] |
0.85KNN-0.15ST | 0.3 | 400 | 25.8 | 4.03 | 52 | [85] |
0.90KNN-0.10BMN | 0.31 | 300 | 33.0 | 4.08 | 62.7 | [86] |
0.8KNN-0.2SSN+0.5%ZnO | 0.45 | 400 | 14.7 | 2.6 | 73.2 | [90] |
0.90KNN-0.10BMN+1.0%CuO | 0.49 | 400 | 26 | 4.02 | 57.3 | [91] |
表3 KNN基陶瓷的储能性能
Table 3 Energy storage properties of KNN-based ceramics
Materials systems | Grain size/µm | Eb/(kV·cm-1) | ΔP/(µC·cm-2) | Wrec/(J·cm-3) | η/% | Ref. |
---|---|---|---|---|---|---|
KNN | 2.26 | 40 | 5 | - | - | [85] |
0.8KNN-0.2SSN | 0.5 | 295 | 13.8 | 2.02 | 81.4 | [84] |
0.85KNN-0.15ST | 0.3 | 400 | 25.8 | 4.03 | 52 | [85] |
0.90KNN-0.10BMN | 0.31 | 300 | 33.0 | 4.08 | 62.7 | [86] |
0.8KNN-0.2SSN+0.5%ZnO | 0.45 | 400 | 14.7 | 2.6 | 73.2 | [90] |
0.90KNN-0.10BMN+1.0%CuO | 0.49 | 400 | 26 | 4.02 | 57.3 | [91] |
图8 具有大铁电畴介质和具有极性纳米微区介质的充放电过程对比图[102,103]
Fig. 8 Comparison of charging and discharging process of dielectrics with large ferroelectric domain and with PNRs[102,103]
Materials | Compositions | Eb/(kV·cm-1) | ΔP/(µC·cm-2) | Wrec/(J·cm-3) | η/% | Ref. |
---|---|---|---|---|---|---|
BNT | 0.89BNT-0.06BT-0.05KNN | 99 | 27.2 | 0.90 | - | [100] |
0.95BNT-0.05BT+3%BaO-B2O3-SiO2 | 94.6 | 31 | 0.68 | 71 | [101] | |
0.9[0.92BNT-0.08BT]-0.1BMT | 135 | ~40 | 2.00 | 88 | [102] | |
0.7BNT-0.3ST+0.05MnO2 | 95 | 36.92 | 0.96 | 74.6 | [103] | |
0.9[0.92BNT-0.08BT]-0.1NaNbO3 | 70 | 25 | 0.71 | 66 | [104] | |
0.7[0.94BNT-0.06BT]-0.3ST | 90 | 30.8 | 0.98 | 82 | [105] | |
0.6BNT-0.2NN-0.2 Ba(Zr0.2Ti0.8)O3 | 175 | 26.61 | 1.69 | 78.4 | [106] | |
0.9BNT-0.1KN | 104 | 28 | 1.17 | 83 | [107] | |
0.84BNT-0.16KNN | 100 | - | 1.20 | 71 | [108] | |
[(Bi1/2Na1/2)0.94Ba0.06]La0.98Zr0.02TiO3 | 83.4 | 33 | 0.58 | - | [109] | |
0.62BNT-0.06BT-0.32(Sr0.7Bi0.3)TiO3 | 60 | ~19 | 0.5 | >90 | [110] | |
0.95(0.8BNT-0.2ST)-0.05NaNbO3 | 70 | 27.53 | 0.74 | 55 | [111] | |
AN | AN | 175 | - | 2.1 | - | [94] |
AN+0.1wt%MnO2 | 150 | ~37 | 2.5 | 56 | [95] | |
Ag(Nb0.85Ta0.15)O3 | 233 | 36.1 | 4.2 | 69 | [78] |
表4 AN和BNT基无铅反铁电陶瓷的储能性能
Table 4 Energy storage properties of AN-based and BNT-based lead-free anti-ferroelectric
Materials | Compositions | Eb/(kV·cm-1) | ΔP/(µC·cm-2) | Wrec/(J·cm-3) | η/% | Ref. |
---|---|---|---|---|---|---|
BNT | 0.89BNT-0.06BT-0.05KNN | 99 | 27.2 | 0.90 | - | [100] |
0.95BNT-0.05BT+3%BaO-B2O3-SiO2 | 94.6 | 31 | 0.68 | 71 | [101] | |
0.9[0.92BNT-0.08BT]-0.1BMT | 135 | ~40 | 2.00 | 88 | [102] | |
0.7BNT-0.3ST+0.05MnO2 | 95 | 36.92 | 0.96 | 74.6 | [103] | |
0.9[0.92BNT-0.08BT]-0.1NaNbO3 | 70 | 25 | 0.71 | 66 | [104] | |
0.7[0.94BNT-0.06BT]-0.3ST | 90 | 30.8 | 0.98 | 82 | [105] | |
0.6BNT-0.2NN-0.2 Ba(Zr0.2Ti0.8)O3 | 175 | 26.61 | 1.69 | 78.4 | [106] | |
0.9BNT-0.1KN | 104 | 28 | 1.17 | 83 | [107] | |
0.84BNT-0.16KNN | 100 | - | 1.20 | 71 | [108] | |
[(Bi1/2Na1/2)0.94Ba0.06]La0.98Zr0.02TiO3 | 83.4 | 33 | 0.58 | - | [109] | |
0.62BNT-0.06BT-0.32(Sr0.7Bi0.3)TiO3 | 60 | ~19 | 0.5 | >90 | [110] | |
0.95(0.8BNT-0.2ST)-0.05NaNbO3 | 70 | 27.53 | 0.74 | 55 | [111] | |
AN | AN | 175 | - | 2.1 | - | [94] |
AN+0.1wt%MnO2 | 150 | ~37 | 2.5 | 56 | [95] | |
Ag(Nb0.85Ta0.15)O3 | 233 | 36.1 | 4.2 | 69 | [78] |
图9 典型无铅块体陶瓷的储能性[23,48,51-53,60-62,84-86,90-91,94-95, 101-108]
Fig. 9 Typical lead-free bulk ceramics[23,48,51-53,60-62,84-86,90-91,94- 95,101-108] (a) Wrec and Eb, (b) Wrec and η
[1] | HAO X H.A review on the dielectric materials for high energy- storage application.J. Adv. Dielect., 2013(1): 1330001-1330014. |
[2] | YAO L M, PAN Z B, LIU S H,et al. Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly(vinylidene fluoride). ACS Appl. Mater. & Interfaces, 2016, 8(39): 26343-26351. |
[3] | HOU C M, HUANG W C, ZHAO W B,et al. Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl. Mater. & Interfaces, 2017, 9(24): 20484-20490. |
[4] | CHANHAN A, PATEL S, VAISH R,et al. Anti-ferroelectric ceramics for high energy density capacitors. Materials, 2015, 8(12): 8009-8031. |
[5] | YAO Z H, SONG Z, HAO H,et al. Homogeneous/ inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater., 2017, 29(20): 1601727-1601741. |
[6] | WEI W, YAN H, WANG T,et al. Reverse boundary layer capacitor model in glass/ceramic composites for energy storage applications. J. Appl. Phys., 2013, 113(2): 024103-024107. |
[7] | TOPRAK A, TIGLI O.Piezoelectric energy harvesting: state- of-the-art and challenges.Appl. Phys. Rev., 2014, 1(3): 031104-031117. |
[8] | LI Y X, XIE J L, CHU Z M,et al. Dielectric and energy storage properties of ceramic/PVDF composites with titanate coupling agents. Ferroelectrics, 2013, 452(1): 101-106. |
[9] | YI D, YUAN J C, LIU H Y,et al. Influence of Al2O3 additive on the dielectric behavior and energy density of Ba0.5Sr0.5TiO3 ceramics. J. Electroceram., 2012, 29(2): 95-98. |
[10] | HUANG Y H, WU Y J, QIU W J,et al. Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc., 2015, 35(5): 1469-1476. |
[11] | LI YONG-XIANG.Some hot topics in electroceramics research.Journal of Inorganic Materials, 2014, 29(1): 1-5. |
[12] | LI J J, PAISAN K, HAN K,et al. New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem. Mater., 2010, 22(18): 5350-5357. |
[13] | PARIZI S S, MELLINGER A, CARUNTU G,et al. Ferroelectric barium titanate nanocubes as cordially, apacitive building best wishes, locks for energy storage applications. ACS Appl. Mater. & Interfaces, 2014, 6(20): 17506-17517. |
[14] | WU T, PU Y P, ZONG T T,et al. Microstructures and dielectric properties of Ba0.4Sr0.6TiO3 ceramics with BaO-TiO2-SiO2 glass- ceramics addition. J. Alloy. Compd., 2014, 584(25): 461-465. |
[15] | NICHOLAS J S, BADRI R, MICHAEL T L,et al. Alkali-free glass as a high energy density dielectric material. Mater. Lett., 2009, 63(15): 1245-1248. |
[16] | ACOSTA M, ZANG J D, JO W,et al. High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J. Eur. Ceram. Soc., 2012, 32(16): 4327-4334. |
[17] | RAENGTHON N, SEBASTIAN T, RAENGTHON N N,et al. BaTiO3-Bi(Zn1/2Ti1/2)O3-BiScO3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc., 2012, 95(11): 3554-3561. |
[18] | MUHAMMAD R, IQBAL Y, REANEY I M,et al. BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc., 2016, 99(6): 2089-2095. |
[19] | WANG X L, ZHANG L, HAO X H,et al. High energy-storage performance of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 relaxor ferroelectric thin films prepared by RF magnetron sputtering. Mater. Res. Bull., 2015, 65: 73-79. |
[20] | PENG B L, ZHANG Q, LI X,et al. Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater., 2015, 1(5): 1500052-1500058. |
[21] | WANG J H, SUN N N, LI Y,et al. Effects of mn doping on dielectric properties and energy-storage performance of Na0.5Bi0.5TiO3 thick films. Ceram. Int., 2017, 43(10): 7804-7809. |
[22] | CHAO S, DOGAN F.Processing and dielectric properties of TiO2 thick films for high-energy density capacitor applications. Int. J. Appl. Ceram. Tec., 2011, 8(6): 1363-1373. |
[23] | HU Q Y, JIN L, WANG T,et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloy. Compd., 2015, 640: 416-420. |
[24] | KWON D K, LEE H M.Temperature stable high energy density capacitors using complex perovskite thin films.IEEE. T. Ultrason. Ferr., 2012, 59(9): 1894-1899. |
[25] | DAMJANOVIC D, KLEIN D, LI J,et al. What can be expected from lead-free piezoelectric materials. Funct. Mater. Lett., 2010, 3(1): 5-13. |
[26] | TAKENAKA T, NAGATA H.Current status and prospects of lead-free piezoelectric ceramics.J. Eur. Ceram. Soc., 2005, 25(12): 2693-2700. |
[27] | WANG YA-JUN, WU XIAO-JUAN, ZENG QING-XUAN.Review on barium titanate based composites with high energy storage density.Science&Technology Review, 2012, 30(10): 65-71. |
[28] | GU YI-TAO, LIU HONG-BO, MA HAI-HUA,et al. Research progress of dielectric materials for energy storage. Insulating Materials, 2015, 48(11): 1-13. |
[29] | BURN I, SMYTH D M.Energy storage in ceramic dielectrics.J. Mater. Sci., 1972, 7(3): 339-343. |
[30] | LOVE G R.Energy storage in ceramic dielectric.J. Am. Ceram. Soc., 1990, 73(2): 323-328. |
[31] | FLETCHER N H, HILTON A D, RICKETTS B W.Optimization of energy storage density in ceramic capacitors.J. Phys. D: Appl. Phys., 1996, 29: 253-258. |
[32] | ZHANG L, HAO X H, ZHANG L W.Enhanced energy-storage performances of Bi2O3-Li2O added (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 thick films. Ceram. Int., 2014, 40(6): 8847-8851. |
[33] | XIU S M, XIAO S, XUE S X,et al. Effect of different Al/Si ratios on the structure and energy storage properties of strontium barium niobate-based glass-ceramics. J. Electron. Mater., 2016, 45(2): 1017-1022. |
[34] | ZHAO X J, PENG G R, ZHAN Z J,et al. Structure change and energy storage property of poly(vinylidene fluoride hexafluoropropylene)/poly(methyl methacrylate) blends. Polym. Sci. Ser. A., 2015, 57(4): 452-459. |
[35] | WEI M, ZHANG J H, LIU J F,et al. Effect of multiple times pre-sintering on the dielectric properties of TiO2/glass composite. J. Mater. Sci-Mater. El., 2017, 28(1): 526-531. |
[36] | SHAY D P, PODRAZA N J, DONNELLY N J,et al. High energy density, high temperature capacitors utilizing mn-doped 0.8CaTiO3- 0.2CaHfO3 Ceramics. J. Am. Ceram. Soc., 2012, 95(4): 1348-1355. |
[37] | JIANG S, ZHANG L, ZHANG G,et al. Effect of Zr: Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties. Ceram. Int., 2013, 39(5): 5571-5575. |
[38] | DANG Z M, YUAN J K, YAO S H,et al. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater., 2013, 25(44): 6334-6365. |
[39] | QING Y C, WEN Q L, LUO F,et al. Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the x-band. J. Mater. Chem. C, 2016, 4(2): 371-375. |
[40] | TAKASHI T, TAKUYA H, HIROAKI T,et al. Fabrication of lead-free semiconducting ceramics using BaTiO3-(Bi1/2Na1/2)TiO3 system by adding CaO. J. Ceram. Soc. Jpn., 2011, 119(1395): 828-831. |
[41] | WANG X R, ZHANG Y, SONG X Z,et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc., 2012, 32(3): 559-567. |
[42] | YOUNG A, HILMAS G, ZHANG S C,et al. Effect of liquid- phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc., 2007, 90(5): 1504-1510. |
[43] | SU X F, RIGGS B C, TOMOZAWA M,et al. Preparation of BaTiO3/low melting glass core-shell nanoparticles for energy storage capacitor applications. J. Mater. Chem. A, 2014, 2(42): 18087-18096. |
[44] | EJAZ M, PULI VS, ELUPULA R,et al. Core-shell structured poly(glycidyl methacrylate)/BaTiO3 nanocomposites prepared by surface-initiated atom transfer radical polymerization: a novel material for high energy density dielectric storage. J. Polym. Sci. Pol. Chem., 2015, 53(6): 719-728. |
[45] | KWON D K, LEE H M.Temperature stable high energy density capacitors using complex perovskite thin films.IEEE. T. Ultrason. Ferr., 2012, 59(9): 1894-1899. |
[46] | HUANG X Y, JIANG P K.Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications.Adv. Mater., 2015, 27(3): 546-554. |
[47] | XU W H, DING Y C, JIANG S H,et al. Polyimide/BaTiO3/ MWCNTs three-phase nanocomposites fabricated by electrospinning with enhanced dielectric properties. Mater. Lett., 2014, 135: 158-161. |
[48] | OGIHARA H, RANDALL C A, SUSAN T M.High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics.J. Am. Ceram. Soc., 2009, 92(8): 1719-1724. |
[49] | NEUSEL C, JELITTO H, SCHNEIDER GA.Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown.J. Appl. Phys., 2015, 117(15): 154902-154910. |
[50] | LIM J B, ZZHANG S J, KIM N,et al. High-temperature dielectrics in the BiScO3-BaTiO3-(K1/2Bi1/2)TiO3 ternary system. J. Am. Ceram. Soc., 2009, 92(3): 679-682. |
[51] | WANG T, JIN L, LI C C,et al. Relaxor ferroelectric BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc., 2015, 98(2): 559-566. |
[52] | SHEN Z B, WANG X H, LUO B C,et al. BaTiO3-BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A, 2015, 3(35): 18146-18153. |
[53] | WU L W, WANG X H, LI L T,et al. Lead-free BaTiO3- Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv., 2016, 6(17): 14273-14282. |
[54] | LI W B, ZHOU D, PANG L X.Novel barium titanate based capacitors with high energy density and fast discharge performance.J. Mater. Chem. A, 2017, 5(37): 19607-19612. |
[55] | YUAN Q B, YAO F Z, WANG Y F.Relaxor-ferroelectric 0.9BaTiO3-0.1Bi(Zn1/2Zr1/2)O3 ceramics capacitors with high energy density and temperature stable energy storage properties.J. Mater. Chem. C, 2017, 5(37): 9552-9558. |
[56] | XU R, XU Z, FENG Y J,et al. Temperature dependence of energy storage in Pb0.90La0.04Ba0.04[(Zr0.7Sn0.3)0.88Ti0.12]O3 antiferroelectric ceramics. J. Am. Ceram. Soc., 2016, 99(9): 2984-2988. |
[57] | MOREAU J M, MICHEL C, GERSON R,et al. Ferroelectric BiFeO3 X-ray and neutron diffraction study. J. Phys. Chem. Solids., 1971, 32(6): 1315-1335. |
[58] | TEAGUE J R, GERSON R, JAMES W J.Dielectic hysteresis in single crystal BiFeO3.Solid State Commun., 1970, 8(13): 1073-1074. |
[59] | KHANSUR N H, ROJAC T, DAMJANOVIC D,et al. Electric- field-induced domain switching and domain texture relaxations in bulk bismuth ferrite. J. Am. Ceram. Soc., 2015, 98(12): 3884-3890. |
[60] | WANG T, JIN L, TIAN Y,et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett., 2014, 137: 79-81. |
[61] | ZHENG D, ZUO R D.Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range.J. Eur. Ceram. Soc., 2017, 37(1): 413-418. |
[62] | ZHENG D G, ZUO R Z, ZHANG D S,et al. Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc., 2015, 98(9): 2692-2695. |
[63] | CORREIA T M, MILLEN M M, ROKOSZ M K.A lead-free and high-energy density ceramic for energy storage applications.J. Am. Ceram. Soc., 2013, 96(9): 2699-2702. |
[64] | CORREIA T, STEWART M, ELLMORE A, et al. Lead-free ceramics with high energy density. Lead-free ceramics with high energy density and reduced losses for high temperature applications. Adv. Eng. Mater., 2017, 19(6): 1700019-1-5. |
[65] | PAN H, ZEENG Y, SHEN Y,et al. BiFeO3-SrTiO3 thin film as a new lead-free relaxor ferroelectric capacitor with ultrahigh energy storage performance. J. Mater. Chem. A, 2017, 5(12): 5920-5926. |
[66] | CHEN X L, HE F, CHEN J,et al. An approach to further improve piezoelectric and ferroelectric properties of (K0.5Na0.5)NbO3 ceramic. J. Mater. Sci-Mater. El., 2014, 25(6): 2634-2637. |
[67] | DU H L, LIU D J, TANG F S,et al. Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead- free ceramics. J. Am. Ceram. Soc., 2007, 90(9): 2824-2829. |
[68] | LI F L, KWOK K W.K0.5Na0.5NbO3-based lead-free transparent electro-optic ceramics prepared by pressureless sintering.J. Am. Ceram. Soc., 2013, 96(11): 3557-3562. |
[69] | WU X, LU S B, KWOK K W,et al. Photoluminescence, electro- optic response and piezoelectric properties in pressureless- sintered Er-doped KNN-based transparent ceramics. J. Alloy. Compd., 2017, 695: 3573-3578. |
[70] | LI J T, BAI Y, QIN S Q.Direct and indirect characterization of electrocaloric effect in (Na, K)NbO3 based lead-free ceramics.Appl. Phys. Lett., 2016, 109(16): 162902-162904. |
[71] | WANG X J, WU J G, BRAHIM D.Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics.Appl. Phys. Lett., 2017, 110(6): 063904-063908. |
[72] | ZHANG G F, LIU H X, YAO Z H,et al. Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics. J. Mater. Sci: Mater. Electron., 2015, 26(5): 2726-2732. |
[73] | NEUSEL C, SCHNEIDER G.Size-dependence of the dielectric breakdown strength from nano-to millimeter scale.J. Mech. Phys. Solids., 2014, 63: 201-213. |
[74] | TUNKASIRI T, RUJIJANAGUL G.Dielectric strength of fine grained barium titanate ceramics.J. Mater. Sci. Lett., 1996, 15(20): 1767-1769. |
[75] | SONG Z, LIU H X, ZHANG S J,et al. Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J. Eur. Ceram. Soc., 2014, 34(5): 1209-1217. |
[76] | YE Y, ZHANG S C, DOGAN F,et al. Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. Proc-IEEE Int. Pulsed Power Conf., 2003, 1: 719-722. |
[77] | LEE H Y, CHO K H, NAM H D.Grain size and temperature dependence of electrical breakdown in BaTiO3 ceramic.Ferroelectrics, 2006, 334(1): 165-169. |
[78] | ZHAO L, LIU Q, GAO J,et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater., 2017, 29(31): 1701824-1701831. |
[79] | HUANG Y H, WU Y J, QIU W J,et al. Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc., 2015, 35(5): 1469-1476. |
[80] | ZHANG G Z, ZHU D Y, ZHANG X S,et al. High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J. Am. Ceram. Soc., 2015, 98(4): 1175-1181. |
[81] | KOSEC M, BOBNAR V, HROVAT M,et al. New lead-free relaxors based on the K0.5Na0.5NbO3-SrTiO3 solid solution. J. Mater. Res., 2004, 19(6): 1849-1854. |
[82] | LIU Z Y, FANH Q, ZHAO Y W,et al. Optical and tunable dielectric properties of K0.5Na0.5NbO3-SrTiO3 ceramics. J. Am. Ceram. Soc., 2016, 99(1): 146-151. |
[83] | WANG BIN-KE, TIAN XIAO-XIA, XU ZHUO,et al. Preparation and performances of KNN-based lead-free transparent ceramics. Acta Phys. Sin., 2012, 61(19): 197703-197707. |
[84] | QU B Y, DU H L, YANG Z T.Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability.J. Mater. Chem. C, 2016, 4(9): 1795-1803. |
[85] | YANG Z T, DU H L, QU S B,et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate- based lead free ceramics. J. Mater. Chem. A, 2016, 4(36): 13778-13785. |
[86] | SHAO T Q, DU H L, MA H,et al. Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A, 2017, 5(2): 554-563. |
[87] | DONG G X, MA S W, DU J,et al. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceram. Int., 2009, 35(5): 2069-2075. |
[88] | GERMAN R M, SURI P, PARK S J.Review: liquid phase sintering.J. Mater. Sci., 2009, 44(1): 1-39. |
[89] | ZHANGQ M, WANG L, LUO J,et al. Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass. J. Am. Ceram. Soc., 2009, 92(8): 1871-1873. |
[90] | QU B Y, DU H L, YANG Z T,et al. Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering. RSC Adv., 2016, 6(41): 34381-34389. |
[91] | QU B Y, DU H L, YANG Z T,et al. Large recoverable energy storage density and low sintering temperature in potassium- sodium niobate based ceramics for multilayer pulsed power capacitors. J. Am. Ceram. Soc., 2017, 100(4): 1517-1526. |
[92] | SHIGEMI A, WADA T.Crystallographic phase stabilities and electronic structures in AgNbO3 by first-principles calculation.Mol. Simulat., 2008, 34(10-15): 1105-1114. |
[93] | VERWERFT M, DYCK DV, BRABERS V M,et al. Electron microscopic study of the phase transformations in AgNbO3. Phys. Status. Solidi. A, 1989, 112(2): 451-466. |
[94] | TIAN Y, JIN L, ZHANG H F,et al. High energy density in silver niobate ceramics. J. Mater. Chem. A, 2016, 4(44): 17279-17288. |
[95] | ZHAO L, LIU Q, ZHANG S J,et al. Lead-free AgNbO3 anti- ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J. Mater. Chem. C, 2016, 4(36): 8380-8384. |
[96] | MAHDI R I, MAJID W H A. Piezoelectric and pyroelectric properties of BNT-based ternary lead-free ceramic-polymer nanocomposites under different poling conditions.RSC Adv., 2016, 6(84): 81296-81309. |
[97] | LU Y Q, LI Y X.A review on lead-free piezoelectric ceramics studies in China.J. Adv. Dielect., 2011, 1(3): 269-288. |
[98] | PANDA P K.Review: environmental friendly lead-free piezoelectric materials.J. Mater. Sci., 2009, 44(19): 5408-5419. |
[99] | GAO F, DONG X L, MAO C L,et al. Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti- ferroelectric ceramics. J. Am. Ceram. Soc., 2011, 94(12): 4382-4386. |
[100] | DING J X, LIU Y F, LUN Y,et al. Enhanced energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method. Mater. Lett., 2014, 114: 107-110. |
[101] | FENG Q, YUAN C L, LIU X Y,et al. Microstructures and energy-storage properties of (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 with BaO-B2O3-SiO2 additions. J. Mater. Sci:Mater. Electron, 2015, 26(7): 5113-5119. |
[102] | CHEN P, CHU B J.Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics.J. Eur. Ceram. Soc., 2016, 36(1): 81-88. |
[103] | CAO W P, LI W L, DAI X F,et al. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc., 2016, 36(3): 593-600. |
[104] | XU Q, LI T M, HAO H,et al. Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc., 2015, 35(2): 545-553. |
[105] | CAO W P, LI W L, ZHANG T D,et al. High-energy storage density and efficiency of (1-x)[0.94NBT-0.06BT]-xST lead-free ceramics. Energy Technol., 2015, 3(12): 1198-1204. |
[106] | TANG W L, XU Q, LIU H X,et al. High energy density dielectrics in lead-free Bi0.5Na0.5TiO3-NaNbO3-Ba(Zr0.2Ti0.8)O3 ternary system with wide operating temperature. J. Mater. Sci: Mater Electron, 2016, 27(6): 6526-6534. |
[107] | LUO L H, WANG B Y, JIANG X J,et al. Energy storage properties of (1-x)(Bi0.5Na0.5)TiO3-xKNbO3 lead-free ceramics. J. Mater. Sci., 2014, 49(4): 1659-1665. |
[108] | HAO J G, XU Z J, CHU R Q,et al. Enhanced energy-storage properties of (1-x)[(1-y),(Bi0.5K0.5)TiO3]-x(K0.Na0.5) NbO3 lead-free ceramics. Solid State Commun, 2015, 204: 19-22. |
[109] | WANG Y F, LV Z L, XIE H,et al. High energy-storage properties of [(Bi1/2Na1/2)0.94Ba0.06]La(1-x)ZrxTiO3 lead-free anti-ferroelectric ceramics. Ceram. Int., 2014, 40(3): 4323-4326. |
[110] | LI F, YANG K, LIU X,et al. Temperature induced high charge- discharge performances in lead-free Bi1/2Na1/2TiO3-based ergodic relaxor ferroelectric ceramics. Scripta Mater., 2017, 141: 15-19. |
[111] | LI F, ZHAI J W, SHEN B,et al. Influence of structural evolution on energy storage properties in Bi1/2Na1/2TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J. Appl. Phys., 2017, 121(5): 054103-054113. |
[112] | MALIC B, KORUZA J, HRESCAK J,et al. Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials, 2015, 8(12): 8117-8146. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||