[1] |
KIM S, SEO D, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries.Advanced Energy Materials. 2012, 2(7): 710-721.
|
[2] |
PAN H, HU Y, CHEN L.Room-temperature stationary sodium- ion batteries for large-scale electric energy storage.Energy & Environmental Science, 2013, 6(8): 2338-2360.
|
[3] |
ZHOU Y N, MA J, HU E,et al. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium- ion batteries. Nature Communications, 2014, 5(5): 5381.
|
[4] |
XIE H.Comprehensive analysis on electrochemical energy storage mode and energy storage materials.Smart Grid, 2014(7): 4-8.
|
[5] |
YABUUCHI N, KUBOTA K, DAHBI M,et al. Research development on sodium-ion batteries. Chemical Reviews, 2014, 114(23): 11636-11682.
|
[6] |
ELLIS B L, NAZAR L F.Sodium and sodium-ion energy storage batteries.Current Opinion in Solid State & Materials Science, 2012, 16(4): 168-177.
|
[7] |
WANG Y S, RONG X H, XU S Y, et al. Recent progress of electrode materials for room-temperature sodium-ion stationary batteries. Energy Storage Science and Technology, 2016, 5(3): 268-284.
|
[8] |
LI Y, LU Y, ZHAO C,et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Materials, 2017, 7: 130-151.
|
[9] |
LI Y, HU Y, QI X,et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Materials, 2016, 5: 191-197.
|
[10] |
ZHOU Y N, SINA M, PEREIRA N,et al. FeO0.7F1.3/C nanocomposite as a high-capacity cathode material for sodium-ion batteries. Advanced Functional Materials, 2015, 25(5): 696-703.
|
[11] |
YE F P, WANG L, LIAN F,et al. Advance in Na-ion batteries. Chemical Industry and Engineering Progress, 2013, 32(8): 1789-1795.
|
[12] |
GE P, FOULETIER M.Electrochemical intercalation of sodium in graphite.Solid State Ionics, 1988, 28: 1172-1175.
|
[13] |
SANGSTER J.C-Na (carbon-sodium) system.Journal of Phase Equilibria and Diffusion, 2007, 28(6): 571-579.
|
[14] |
MORTAZAVI M, YE Q, BIRBILIS N,et al. High capacity group- 15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights. Journal of Power Sources, 2015, 285: 29-36.
|
[15] |
WANG M, YANG Z, WANG J,et al. Sb nanoparticles encapsulated in a reticular amorphous carbon network for enhanced sodium storage. Small, 2015, 11(40): 5381-5387.
|
[16] |
WU L, HU X, QIAN J,et al. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy & Environmental Science, 2013, 7(1): 323-328.
|
[17] |
ZHANG N, LIU Y C, LU Y Y, et al. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Research, 2015, 8(10): 3384-3393.
|
[18] |
ALLAN P K, GRIFFIN J M, DARWICHE A,et al. Tracking sodium- antimonide phase transformations in sodium-ion anodes: insights from operando pair distribution function analysis and solid-state NMR spectroscopy. Journal of the American Chemical Society, 2016, 138(7): 2352-2365.
|
[19] |
LI S, WANG Z, LIU J,et al. Yolk-shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(30): 19438-19445.
|
[20] |
NITHYADHARSENI P, REDDY M V, NALINI B,et al. Electrochemical studies of CNT/Si-SnSb nanoparticles for lithium ion batteries. Materials Research Bulletin, 2015, 70: 478-485.
|
[21] |
WANG Y, ZHANG P, WANG J,et al. Lithium storage characteristics and electrochemical performance of Si-Sb-Ag composite anode materials. International Journal Electrochemical Science, 2015, 10: 9652-9665.
|
[22] |
SZZECH J R, SONG J.Nanostructured silicon for high capacity lithium battery anodes.Energy & Environmental Science, 2010, 4(1): 56-72.
|
[23] |
WANG J, WANG Y, ZHANG P,et al. Preparation and electrochemical properties of binary SixSb immiscible alloy for lithium ion batteries. Journal of Alloys & Compounds, 2014, 610(30): 308-314.
|
[24] |
GUO H, ZHAO H, YIN C,et al. Si/SnSb alloy composite as high capacity anode materials for Li-ion batteries. Journal of Alloys and Compounds. 2006, 426(1/2): 277-280.
|
[25] |
CHOU C, LEE M, HWANG G S.A comparative first-principles study on sodiation of silicon, germanium, and tin for sodium-ion
|
|
batteries. Journal of Physical Chemistry C, 2015, 119(27): 14843-14850.
|
[26] |
LIM C, HUANG T, SHAO P,et al. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochimica Acta, 2016, 211: 265-272.
|
[27] |
XU Y, SWAANS E, BASAK S,et al. Reversible Na-ion uptake in Si nanoparticles. Advanced Energy Materials, 2016, 6(2): 1501436.
|
[28] |
GORKA J, BAGGETTO L, KEUM J K,et al. The electrochemical reactions of SnO2 with Li and Na: a study using thin films and mesoporous carbons. Journal of Power Sources, 2015, 284: 1-9.
|
[29] |
ZHOU Y N, ZHANG H, WU C L,et al. Electrochemical properties of GeO2 films fabricated by plused laser deposition. Chinese Journal of Inorganic Chemistry, 2007, 23(8): 1353-1357.
|
[30] |
ELLIS L D, WILKES B N, HATCHARD T D,et al. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. Journal of the Electrochemical Society, 2013, 161(3): A416-A421.
|
[31] |
KOMABA S, MATSUURA Y, ISHIKAWA T,et al. Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochemistry Communications, 2012, 21: 65-68.
|
[32] |
LI G, WANG W, YANG W,et al. Epitaxial growth of group III-nitride films by pulsed laser deposition and their use in the development of LED devices. Surface Science Reports, 2015, 70(3): 380-423.
|
[33] |
TANG P, LI B, FENG L, et al. Structural, electrical and optical properties of AlSb thin films deposited by pulsed laser deposition. Journal of Alloys and Compounds, 2017, 692: 22-25.
|
[34] |
MOSCICKI T, RADZIEJEWSKA J, HOFFMAN J,et al. WB2 to WB3 phase change during reactive spark plasma sintering and pulsed laser ablation/deposition processes. Ceramics International, 2015, 41(7): 8273-8281.
|
[35] |
ZHU X, ONG C S, XU X,et al. Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins. Scientific Reports, 2013, 3(1): 1084.
|