无机材料学报 ›› 2018, Vol. 33 ›› Issue (5): 483-493.DOI: 10.15541/jim20170307
所属专题: 光伏材料; 乘风破浪的新能源材料
孟祥东1, 尹默1, 舒婷2, 胡悦1, 孙萌1, 于兆亮1,3, 李海波1,3
收稿日期:
2017-06-21
修回日期:
2017-09-27
出版日期:
2018-05-20
网络出版日期:
2018-04-26
作者简介:
孟祥东(1975-), 男, 教授. E-mail: xdmeng@jlnu.edu.cn
基金资助:
MENG Xiang-Dong1, YIN Mo1, SHU Ting2, HU Yue1, SUN Meng1, YU Zhao-Liang1,3, LI Hai-Bo1,3
Received:
2017-06-21
Revised:
2017-09-27
Published:
2018-05-20
Online:
2018-04-26
About author:
MENG Xiang-Dong. E-mail: xdmeng@jlnu.edu.cn
Supported by:
摘要:
量子点敏化太阳能电池(Quantum Dot-Sensitized Solar cells, QDSCs)制备工艺简单, 制造成本低廉, 是一种有希望的新型太阳能电池。QDSCs利用量子点具有光谱吸收强、尺寸可调和多激子效应等优点, 能够提高其光电转换效率; 同时, 利用无机量子点替代染料作为敏化剂, 能够解决染料敏化太阳能电池(DSCs)的稳定性问题。但是, QDSCs光电转换效率较低是制约其应用的主要问题。近年来, 通过改变和调控对电极的材料和电子特性提高QDSCs的光电效率的方法受到了广泛关注。本文综述了QDSCs对电极材料的制备方法、微观形貌和晶体结构; 重点分析了金属化合物、复合材料、杂化材料、多元金属硫族化合物、导电聚合物和碳材料对电极对量子点敏化太阳能电池的电荷转移阻抗、光电性能等参数的影响; 并分析影响其电催化活性和电子传输性能的主要因素。最后, 提出通过表面修饰、复合和杂化等方法构筑新型对电极材料, 进而改善和提高QDSCs转换效率和稳定性, 是今后的研究重点和研究方向。
中图分类号:
孟祥东, 尹默, 舒婷, 胡悦, 孙萌, 于兆亮, 李海波. 量子点敏化太阳能电池对电极材料的研究进展[J]. 无机材料学报, 2018, 33(5): 483-493.
MENG Xiang-Dong, YIN Mo, SHU Ting, HU Yue, SUN Meng, YU Zhao-Liang, LI Hai-Bo. Research Progress on Counter Electrodes of Quantum Dot-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2018, 33(5): 483-493.
CE | QDs | Synthesis method | Electrolyte | Rct/(?·cm2) | Voc/mV | Jsc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|---|
Cu2S[ | CdSe | Dipping immersion | Polysulfide | 2.72 | 590 | 16.04 | 56 | 5.21 |
PbS[ | CdS/ZnS | SILAR | Polysulfide | 30.00 | 580 | 18.30 | 45 | 4.70 |
CuS[ | CdS | CBD | Polysulfide | 1.04 | 570 | 14.58 | 55 | 4.53 |
CuS[ | CdS/CdSe | Heat-sealed method | Polysulfide | 47.20 | 550 | 16.05 | 49 | 4.32 |
CoS2[ | CdS/CdSe | Thermal sulfidation | Polysulfide | 40.60 | 510 | 14.44 | 56 | 4.16 |
CuS[ | CdS/CdSe | CBD | Polysulfide | 2.70 | 600 | 12.51 | 53 | 4.02 |
CuS[ | CdS, CdSe, ZnS | CBD | Polysulfide | 4.40 | 550 | 13.87 | 51 | 4.01 |
Cu2S[ | CdS&CdSe | Dipping immersion | Polysulfide | 0.65 | 450 | 13.45 | 60 | 3.65 |
PbS[ | CdSe | Dipping immersion | Polysulfide | 130.00 | 550 | 9.28 | 59 | 3.01 |
NiS[ | CdS, CdSe, ZnS | CBD | Polysulfide | 3.16 | 510 | 10.38 | 55 | 2.97 |
CoxSe[ | CdS | Hydrothermal | Polysulfide | 2.68 | 650 | 9.29 | 35 | 2.11 |
FeS[ | CdS | Dipping immersion | Polysulfide | 13.60 | 430 | 9.60 | 43 | 1.76 |
Mo2S[ | CdS、ZnS | Hydrothermal | Polysulfide | / | 480 | 6.22 | 41 | 1.21 |
表1 不同过渡金属作为对电极所组装的QDSCs的光电参数
Table 1 Photoelectric properties of QDSCS with different transition metal electrode
CE | QDs | Synthesis method | Electrolyte | Rct/(?·cm2) | Voc/mV | Jsc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|---|
Cu2S[ | CdSe | Dipping immersion | Polysulfide | 2.72 | 590 | 16.04 | 56 | 5.21 |
PbS[ | CdS/ZnS | SILAR | Polysulfide | 30.00 | 580 | 18.30 | 45 | 4.70 |
CuS[ | CdS | CBD | Polysulfide | 1.04 | 570 | 14.58 | 55 | 4.53 |
CuS[ | CdS/CdSe | Heat-sealed method | Polysulfide | 47.20 | 550 | 16.05 | 49 | 4.32 |
CoS2[ | CdS/CdSe | Thermal sulfidation | Polysulfide | 40.60 | 510 | 14.44 | 56 | 4.16 |
CuS[ | CdS/CdSe | CBD | Polysulfide | 2.70 | 600 | 12.51 | 53 | 4.02 |
CuS[ | CdS, CdSe, ZnS | CBD | Polysulfide | 4.40 | 550 | 13.87 | 51 | 4.01 |
Cu2S[ | CdS&CdSe | Dipping immersion | Polysulfide | 0.65 | 450 | 13.45 | 60 | 3.65 |
PbS[ | CdSe | Dipping immersion | Polysulfide | 130.00 | 550 | 9.28 | 59 | 3.01 |
NiS[ | CdS, CdSe, ZnS | CBD | Polysulfide | 3.16 | 510 | 10.38 | 55 | 2.97 |
CoxSe[ | CdS | Hydrothermal | Polysulfide | 2.68 | 650 | 9.29 | 35 | 2.11 |
FeS[ | CdS | Dipping immersion | Polysulfide | 13.60 | 430 | 9.60 | 43 | 1.76 |
Mo2S[ | CdS、ZnS | Hydrothermal | Polysulfide | / | 480 | 6.22 | 41 | 1.21 |
图6 QDSCS中电子传输结构示意图[62]
Fig. 6 Schematic diagram showing the electron transport from QDs into TiO2 and reduction reaction at CE/electrolyte interface[62]
CE | QDs | Synthetic method | Electrolyte | Rct/(?·cm2) | Jsc/mV | Voc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|---|
RGO/Cu2S[ | CdSe | Spin-coating | Polysulfide | 1.61 | 18.40 | 520.00 | 46 | 4.40 |
CuInS2/C[ | CdS/CdSe | Dotor-blading | Polysulfide | 18.79 | 14.16 | 512.00 | 60 | 4.32 |
PbS/CB[ | CdS/CdSe | Dotor-blading | Polysulfide | 10.28 | 13.32 | 509.58 | 58 | 3.91 |
CuS/EC[ | CdS | Hydrothermal | Polysulfide | / | 14.60 | 521.00 | 51 | 3.86 |
CoS/NiS[ | CdS/CdSe | CBD | Polysulfide | 1.97 | 11.15 | 579.00 | 53 | 3.40 |
ZnO/PbS[ | CdSe | SILAR | Polysulfide | 5.20 | 11.17 | 520.00 | 53 | 3.06 |
表2 不同复合材料分别作为对电极所组装的QDSCS的光电参数
Table 2 Different composite materials as the electrode assembly QDSCS photoelectric parameters
CE | QDs | Synthetic method | Electrolyte | Rct/(?·cm2) | Jsc/mV | Voc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|---|
RGO/Cu2S[ | CdSe | Spin-coating | Polysulfide | 1.61 | 18.40 | 520.00 | 46 | 4.40 |
CuInS2/C[ | CdS/CdSe | Dotor-blading | Polysulfide | 18.79 | 14.16 | 512.00 | 60 | 4.32 |
PbS/CB[ | CdS/CdSe | Dotor-blading | Polysulfide | 10.28 | 13.32 | 509.58 | 58 | 3.91 |
CuS/EC[ | CdS | Hydrothermal | Polysulfide | / | 14.60 | 521.00 | 51 | 3.86 |
CoS/NiS[ | CdS/CdSe | CBD | Polysulfide | 1.97 | 11.15 | 579.00 | 53 | 3.40 |
ZnO/PbS[ | CdSe | SILAR | Polysulfide | 5.20 | 11.17 | 520.00 | 53 | 3.06 |
图8 QDSCs的光阳极和对电极的杂化材料[65]
Fig. 8 QDSCs with a CdSe/CdS/ZnO-NW photoelectrode and a graphene-based hybrid material CE (a color version of this figure can be viewed online)[65]
CE | QDs | Synthetic method | Rct/(?·cm2) | Voc/mV | Jsc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|
AuPtNP/RGO | CdSe | Co-reduction | 34.25 | 720 | 15.2 | 41 | 4.50 |
TiN/CNT-GR | CdSe/CdS | SILAR | 14.40 | 642 | 14.0 | 46 | 4.13 |
TiN/CNT | CdSe/CdS | 23.60 | 645 | 13.7 | 44 | 3.89 | |
TiN-GR | CdSe/CdS | 36.60 | 636 | 12.7 | 43 | 3.47 | |
TiN | CdSe/CdS | 123.00 | 609 | 6.6 | 20 | 0.80 | |
CuS/Pt | CdS | Coated reaction method | 424.00 | 567 | 8.0 | 50 | 2.27 |
表3 不同杂化材料分别作为对电极所组装的QDSCS的光电参数[63,64,65]
Table 3 Different hybrid materials as the electrode assembly QDSCS photoelectric parameters[63,64,65]
CE | QDs | Synthetic method | Rct/(?·cm2) | Voc/mV | Jsc/(mA·cm-2) | FF/% | ŋ/% |
---|---|---|---|---|---|---|---|
AuPtNP/RGO | CdSe | Co-reduction | 34.25 | 720 | 15.2 | 41 | 4.50 |
TiN/CNT-GR | CdSe/CdS | SILAR | 14.40 | 642 | 14.0 | 46 | 4.13 |
TiN/CNT | CdSe/CdS | 23.60 | 645 | 13.7 | 44 | 3.89 | |
TiN-GR | CdSe/CdS | 36.60 | 636 | 12.7 | 43 | 3.47 | |
TiN | CdSe/CdS | 123.00 | 609 | 6.6 | 20 | 0.80 | |
CuS/Pt | CdS | Coated reaction method | 424.00 | 567 | 8.0 | 50 | 2.27 |
[1] | BAKER D R, KAMAT P V.Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular supportarchitectures.Advanced Functional Materials, 2009, 19(5): 805-811. |
[2] | LEE H, LEVENTIS H C, MOON S J, et al. PbS and CdS quantum dot sensitized solid state solar sells: “old concepts, new results”.Advanced Functional Materials, 2009, 19(17): 2735-2742. |
[3] | LEE W, MIN S, DHAS V,et al. Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochemistry Communications, 2009, 11(1): 103-106. |
[4] | SHALOM M, DOR S, RÜHLE S,et al. Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. The Journal of Physical Chemistry C, 2009, 113(9): 3895-3898. |
[5] | LEE Y L, CHANG C H.Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells.Journal of Power Sources, 2008, 185(1): 584-588. |
[6] | ROBEL I, SUBRAMANIAN V, KUNO M,et al. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of The American Chemical Society, 2006, 128(7): 2385-2393. |
[7] | DIGUNA L J, SHEN Q, KOBAYASHI J, et al. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Applied Physics Letters, 2007, 91(2): 023116-1-3. |
[8] | GIMÉNEZ S, MORA I, MACOR L, et al. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology, 2009, 20(29): 295204-1-6. |
[9] | CHONG L W, CHIEN H T, LEE Y L.Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications.Journal of Power Sources, 2010, 195(15): 5109-5113. |
[10] | PLASS R, PELET S, KRUEGER J,et al. Quantum dot sensitization of organic-inorganic hybrid solar cells. The Journal of Physical Chemistry B, 2002, 106(31): 7578-7580. |
[11] | SCHALLER R, KLIMOV V. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 2004, 92(18): 186601-1-4. |
[12] | ZABAN A, MICIC O I, GREGG B A,et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir, 1998, 14(12): 3153-3156. |
[13] | LAN G Y, LIN Y W, HUANG Y F,et al. Photo-assisted synthesis of highly fluorescent ZnSe (S) quantum dots in aqueous solution. Journal of Chemistry Materials, 2007, 17(25): 2661-2666. |
[14] | SHEN C, SUN L D, KOH Z Y,et al. Cuprous sulfide counter electrodes prepared by ion exchange for high-efficiency quantum dot- sensitized solar cells. Journal of Materials Chemistry A, 2014, 2(48): 2807-2813. |
[15] | KAMAT P V.Quantum dot solar cells. semiconductor nanocrystals as light harvesters.The Journal of Physical Chemistry C, 2008, 112(48): 18737-18753. |
[16] | IVAN M S, JUAN B.Breakthroughs in the development of semiconductor-sensitized solar cells.Physical Chemistry Letters, 2010, 1(20): 3046-3052. |
[17] | ASKHAT N J.Lead sulfide quantum dot-based nanostructured solar cells. München Ludwig Maximilians Universität: Ph.D. dissertation 2014: 81-110. |
[18] | KAMAT P V.Quantum dot solar cells. the next big thing in photovoltaics.Physical Chemistry Letters, 2013, 4(6): 908-918. |
[19] | FAN S Q, FANG B Z, JUNG H K,et al. Ordered multimodal porous carbon as highly efficient counter electrodes in dye-sensitized and quantum-dot solar cells. Langumuir, 2010, 26(16): 13644-13649. |
[20] | YANG Z, CHEN C Y, LIU C W,et al. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chemical Communications, 2010, 46(30): 5485-5487. |
[21] | MENG K, CHEN G, THAMPI K R,et al. Metal chalcogenides as counter electrode materials in quantum dot sensitized solar cells: a perspective. Journal of Materials Chemistry A, 2015, 3: 23074-23089. |
[22] | IVÁN M S, SIXTO G, FRANCISCO F S,et al. Recombination in quantum dot sensitized solar cells. Accounts of Chemical Research, 2009, 42(11): 1848-1857. |
[23] | ZHAO K, YU H J, ZHANG H,et al. Electroplating cuprous sulfide counter electrode for high efficiency long-term stability quantum dot sensitized solar cells . The Journal of Physical Chemistry C, 2014, 118(11): 5683-5690. |
[24] | YANG Y Y, ZHANG Q X,WANG T Z,et al. Novel tandem structure employing mesh-structured Cu2S counter electrode for enhanced performance of quantum dot-sensitized solar cells. Electrochimica Acta, 2013, 88(2): 44-50. |
[25] | CHAITANYA K K, RAMI R D, YASHA D,et al. Synthesis of novel Cu2S nanohusks as high performance counter electrode for CdS/CdSe sensitized solar cell. Journal of Power Sources, 2016, 315: 277-283. |
[26] | QUY V H, KIM J H, KANG S H,et al. Enhanced electrocatalytic activity of F-doped SnO2/Cu2S electrodes for quantum dot-sensitized solar cells. Journal of Power Sources, 2016, 316: 53-59. |
[27] | JIANG Y, ZHANG X, GE Q Q,et al. ITO@Cu2S tunnel junction nanowire arrays as efficient counter electrode for quantum-dot- sensitized solar cells. Nano Letters, 2014, 14(1): 365-372. |
[28] | ZHAO K, PAN Z X, IVAN M S,et al. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. Journal of the American Chemical Society, 2015, 137(16): 5602-5609. |
[29] | HODES G, MANASSEN J, CAHEN D.Electrocatalytic electrodes for the polysulfide redox system.The Electrochemical Society, 1980, 11(29): 544-549. |
[30] | VICTORIA G P, XU X Q, JAUN B.Modeling high-efficiency quantum dot sensitized solar cells.ACS Nano, 2010, 4(10): 5783-5790. |
[31] | YANG Z, CHEN C Y, LIU C W,et al. Quantum dot-sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency. Advanced Energy Materials, 2011, 1(2): 259-264. |
[32] | KIM H J, KO B H, CHANDU V V M G, et al. Facile synthesis of morphology dependent CuS nanoparticle thin film as a highly efficient counter electrode for quantum dot-sensitized solar cells. Journal of Electroanalytical Chemistry, 2017, 791: 95-102. |
[33] | KUNDU M. HASEGAWA T, TERABE K. Effect of sulfurization conditions on structural and electrical properties of copper sulfide films. Journal of Applied Physics, 2008, 103: 073523-1-7. |
[34] | KALANUR S S, CHAE S Y, JOO O S.Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells.Electrochimica Acta, 2013, 103(8): 91-95. |
[35] | SAVARIRAJ A D, VISWANATHAN K K, PRABAKAR K.Influence of Cu vacancy on knit coir mat structured CuS as counter electrode for quantum dot sensitized solar cells.ACS Applied Materials & Interfaces, 2014, 6(22): 19702-19709. |
[36] | WANG F F, DONG H, PAN J L,et al. One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum dot sensitized solar cells. The Journal of Physical Chemistry C, 2014, 118(34): 19589-19598. |
[37] | SAVARIRAJ A D, VISWANATHAN K K, PRABAKAR K.CuS nano flakes and nano platelets as counter electrode for quantum dots sensitized solar cells.Electrochimica Acta, 2014, 149: 364-369. |
[38] | KIM H J, KIM J H, KUMAR C P,et al. Facile chemical bath deposition of CuS nano peas like structure as a high efficient counter electrode for quantum-dot sensitized solar cells. Journal of Electroanalytical Chemistry, 2015, 739: 20-27. |
[39] | LIN Y B, LIN Y, WU J H, et al. Facile synthesis of porous CuS film as a high efficient counter electrode for quantum-dot-sensitized solar cells. Applied Physics A, 2016, 122: 609-1-6. |
[40] | WANG Y Q, ZHANG Q H, LI Y G,et al. CuxS counter electrodes in-situ prepared via the sulfidation of magnetron sputtering Cu film for quantum dot sensitized solar cells. Journal of Power Sources, 2016, 318: 128-135. |
[41] | CHEN X Q, LI Z, YANG B,et al. Room temperature synthesis of Cu2-xE (E= S, Se) nanotubes with hierarchical architecture as a counter electrodes of quantum dot sensitized solar cells. Chemistry - A European Journal, 2015, 21(3): 1055-1063. |
[42] | ESKANDARI M, AHMADI V.Copper selenide as a new counter electrode for zinc oxide nanorod based quantum dot solar cells.Materials Letters, 2015, 142: 308-311. |
[43] | LIN C Y, TENG C Y, LI T L,et al. Photoactive p-type PbS as a counter electrode for quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1(4): 1155-1162. |
[44] | TACHAN Z, SHALOM M, HOD I,et al. PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. The Journal of Physical Chemistry C, 2011, 115(13): 6162-6166. |
[45] | FABER M S, DZIEDZIC R, LUKOWSKI M A,et al. High- performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures. Journal of the American Chemical Society, 2014, 136(28): 10053-10061. |
[46] | FABER M S, PARK K, CABAN A M,et al. Earth-abundant cobalt pyrite (CoS2) thin film on glass as a robust, high-performance counter electrode for quantum dot-sensitized solar cells. The Journal of Physics Chemical Letters, 2013, 4(11): 1843-1849. |
[47] | MA C Q, TANG Q W, ZHAO Z Y,et al. Bifacial quantum dot-sensitized solar cells with transparent cobalt selenide counter electrodes. Journal of Power Sources, 2015, 278: 183-189. |
[48] | YANG J Q, GUO W, LI D,et al. Synthesis and electrochemical performances of novel hierarchical flower-like nickel sulfide with tunable number of composed nanoplates. Journal of Power Sources, 2014, 268: 113-120. |
[49] | KIM H J, KIM D J, RAO S S,et al. Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells. Electrochimica Acta, 2014, 127: 427-432. |
[50] | CHEN H N, ZHU L Q, LIU H C,et al. Efficient iron sulfide counter electrode for quantum dots-sensitized solar cells . Journal of Power Sources, 2014, 245(1): 406-410. |
[51] | SHANE T F, JANET E M. Petaled molybdenum disulfide surfaces: facile synthesis of a superior cathode for QDSSCs. Advanced Energy Materials, 2014, 4: 1400495-1-6. |
[52] | YU H J, BAO H L, ZHAO K,et al. Topotactically grown bismuth sulfide network film on substrate as low-cost counter electrodes for quantum dot-sensitized solar cells . The Journal of Physical Chemistry C, 2014, 118(30): 16602-16610. |
[53] | RADICH J G, DWYER R, KAMAT P V,et al. Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. overcoming the redox limitations of S2-/Sn2- at the counter electrode. The Journal of Physical Chemistry Letters, 2011, 2(19): 2453-2460. |
[54] | ZHU Y Y, CUI H J, JIA S P,et al. 3D graphene frameworks with uniformly dispersed CuS as an efficient catalytic electrode for quantum dot-sensitized solar cells. Electrochimica Acta, 2016, 208: 288-295. |
[55] | MAHMOUD S, SHAGHAYEGH A.Graphene/CuS/PbS nanocomposite as an effective counter electrode for quantum dot sensitized solar cells.Journal of Alloys and Compounds. 2017, 696: 369-375. |
[56] | ZHANG X L, HUANG X M, YANG Y Y,et al. Investigation on new CuInS2/carbon composite counter electrodes for CdS/CdSe cosensitized solar cells. ACS Applied Materials & Interfaces, 2013, 5(13): 5954-5960. |
[57] | LI L L, ZHU P N, PENG S J,et al. Controlled growth of CuS on electrospun carbon nanofibers as an efficient counter electrode for quantum dot-sensitized solar cells. The Journal of Physical Chemistry C, 2014, 118(30): 16526-16535. |
[58] | KIM H J, SUH S M, S. RAO S,et al. Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. Journal of Electroanalytical Chemistry, 2016, 777: 123-132. |
[59] | PUNNOOSE D, KUMAR C P, RAO S S,et al. In situ synthesis of CuS nano platelets on nano wall networks of Ni foam and its application as an efficient counter electrode for quantum dot sensitized solar cells. Organic Electronics, 2017, 42: 115-122. |
[60] | KIM H J, KIM S W, CHANDU V V M,et al. Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode. Journal of Power Sources, 2014, 268: 163-170. |
[61] | YANG Y Y, ZHU L F, SUN H C,et al. Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability. ACS Applied Materials & Interfaces, 2012, 4(11): 6162-6168. |
[62] | SONG X H, WANG M Q, DENG J P,et al. ZnO/PbS core/shell nanorod arrays as efficient counter electrode for quantum dot- sensitized solar cells. Journal of Power Sources, 2014, 269: 661-670. |
[63] | YOUN D H, SEOL M, KIM J Y,et al. TiN nanoparticles on CNT- graphene hybrid support as noble-metal-free counter electrode for quantum-dot-sensitized solar cells. ChemSusChem, 2013, 6: 261-267. |
[64] | RAJ C J, PRABAKAR K, SAVARIRAJ A D,et al. Surface reinforced platinum counter electrode for quantum dots sensitized solar cells. Electrochimica Acta, 2013, 103: 231-236. |
[65] | DAO V D, CHOI Y, YONG K,et al. Graphene-based nanohybrid materials as the counter electrode for highly efficient quantum- dot-sensitized solar cells. Carbon, 2015, 84: 383-389. |
[66] | JUN X U, XIA Y, YANG Q D,et al. Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. The Journal of Physical Chemistry C, 2012, 116(37): 19718-19723. |
[67] | CAO Y B, XIAO Y J, JUNG J Y,et al. Highly electrocatalytic Cu2ZnSn(S1-xSex)4 counter electrodes for quantum-dot-sensitized solar cells. ACS & Interfaces Applied Materials, 2013, 5(3): 479-484. |
[68] | LUO Q, GU Y C, LI J B,et al. Efficient ternary cobalt spinel counter electrodes for quantum-dot sensitized solar cells. Journal of Power Sources, 2016, 312: 93-100. |
[69] | HUANG Z, LIU X Z, LI K X,et al. Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2007, 9(4): 596-598. |
[70] | ZHAO Q, JAMAL, ZHANG LI,et al. The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Research Letters, 2014, 9: 557-1-9. |
[71] | YEH M H, LEE C P, CHOU C Y,et al. Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte. Electrochimica Acta, 2011, 57: 277-284. |
[72] | ZHANG Q X, ZHANG Y D, HUANG S Q,et al. Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs). Electrochemistry Communications, 2010, 12(2): 327-330. |
[73] | FAN S Q, FANG B Z, JUNG H K, et al.Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells. Applied Physics Letters, 2010, 96(6): 063501-1-3. |
[74] | GOURI S P, JUNG H K, KIM M S,et al. Different hierarchical nanostructured carbons as counter electrodes for CdS quantum dot solar Cells, ACS Applied Materials & Interfaces, 2012, 4(1): 375-381. |
[75] | SUDHAGAR P, RAMASAM E Y, CHO W H,et al. Robust mesocellular carbon foam counter electrode for quantum-dot sensitized solar cells. Electrochemistry Communications, 2011, 13(1): 34-37. |
[76] | DONG J H, JIA S P, CHEN J Z,et al. Nitrogen-doped hollow carbon nanoparticles as efficient counter electrodes in quantum dot sensitized solar cells. Journal of Materials Chemistry, 2012, 22(19): 9745-9750. |
[77] | HAO F, DONG P, ZHANG J,et al. High electrocatalytic activity of vertically aligned single-walled carbon nanotubes towards sulfide redox shuttles. Scientific Reports, 2012, 2(368): 1-6. |
[78] | SEOL M, YOUN D H, KIM J Y, et al. Mo-compound/CNT- graphene composites as efficient catalytic electrodes for quantum- dot-sensitized solar cells. Advanced Energy Materials, 2014, 4(4): 1300775-1-7. |
[79] | JIAO S, DU J, DU Z L,et al. Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12%. The Journal of Physical Chemistry Letters, 2017, 8(3): 559-564. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[8] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[9] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[10] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[11] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[14] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||