无机材料学报 ›› 2017, Vol. 32 ›› Issue (8): 870-876.DOI: 10.15541/jim20160584
郭秀斌1, 于 威1, 李 婧1, 蒋昭毅2, 马登浩2, 刘海旭1
收稿日期:
2016-10-24
修回日期:
2016-12-27
出版日期:
2017-08-10
网络出版日期:
2017-07-19
作者简介:
郭秀斌(1990–), 男, 硕士研究生. E-mail: 1067654456@qq.com
基金资助:
GUO Xiu-Bin1, YU Wei1, Li Jing1, JIANG Zhao-Yi2, MA Deng-Hao2, LIU Hai-Xu1
Received:
2016-10-24
Revised:
2016-12-27
Published:
2017-08-10
Online:
2017-07-19
About author:
GUO Xiu-Bin. E-mail: 1067654456@qq.com
Supported by:
摘要:
采用纯N, N-二甲基甲酰胺(DMF)溶剂、纯二甲基亚砜(DMSO)溶剂以及DMSO/DMF不同体积比例混合溶剂制备钙钛矿(CH3NH3PbI3)薄膜, 并系统研究了不同溶剂对钙钛矿薄膜微结构及光电特性的影响。结果表明, 随着DMSO在混合溶剂中比例增加, 钙钛矿薄膜平均晶粒尺寸增大, 碘化铅(PbI2)残留量降低, 同时薄膜中有序的钙钛矿晶体所占比例呈现先增大后减小的趋势, 并且当DMSO占混合溶剂体积比为60%时达到最大。薄膜Urbach能, 载流子寿命以及PbI2含量之间的关系表明, 微量的PbI2可有效钝化钙钛矿薄膜的缺陷。经过优化后(DMSO占混合溶剂体积比为30%), 钙钛矿太阳电池的光电转换效率达到15.1 % (VOC=0.99 V; JSC=20.9 mA/cm2; FF=0.73)。
中图分类号:
郭秀斌, 于 威, 李 婧, 蒋昭毅, 马登浩, 刘海旭. 利用混合溶剂实现钙钛矿材料微观结构和光电性能优化[J]. 无机材料学报, 2017, 32(8): 870-876.
GUO Xiu-Bin, YU Wei, Li Jing, JIANG Zhao-Yi, MA Deng-Hao, LIU Hai-Xu. Improving Microstructure and Photoelectric Performance of the Perovskite Material via Mixed Solvents[J]. Journal of Inorganic Materials, 2017, 32(8): 870-876.
图1 不同溶剂制备的钙钛矿薄膜表面形貌
Fig. 1 Surface morphologies of perovskite films prepared by different solvents(a) Pure DMF solvent; (f) Pure DMSO solvent; (b) 15% DMSO; (c) 30% DMSO; (d) 60% DMSO; (e) 80% DMSO
图4 不同溶剂制备的钙钛矿薄膜截面图
Fig. 4 Cross-section views of perovskite films prepared by different solvents(a) Pure DMF solvent; (d) Pure DMSO solvent; (b) 30% DMSO; (c) 60% DMSO
图6 纯DMF溶剂制备的钙钛矿薄膜PL拟合结果(a)以及有序相和无序相比值随DMSO含量变化趋势图(b)
Fig. 6 Fit of PL spectrum for perovskite film based on pure DMF solvent (a); the change trend of the ratio of ordered to disordered phases with the increase of DMSO (b)
Sample | τ1/ns | τ2/ns |
---|---|---|
DMF | 2.0 | 81 |
15% | 3.1 | 85 |
30% | 2.6 | 94 |
60% | 3.5 | 90 |
80% | 1.8 | 77 |
DMSO | 1.7 | 67 |
表1 时间分辨的光致发光双指数衰减拟合参数
Table 1 Carrier lifetime extracted from TR-PL decay curves
Sample | τ1/ns | τ2/ns |
---|---|---|
DMF | 2.0 | 81 |
15% | 3.1 | 85 |
30% | 2.6 | 94 |
60% | 3.5 | 90 |
80% | 1.8 | 77 |
DMSO | 1.7 | 67 |
Devices | JSC/(mA·cm-2) | VOC/V | FF/% | PCE/% |
---|---|---|---|---|
DMF | 15.4 | 0.91 | 66.3 | 9.3 |
15% | 18.9 | 0.95 | 70.3 | 12.6 |
30% | 20.9 | 0.99 | 72.8 | 15.1 |
60% | 20.2 | 0.96 | 71.9 | 13.9 |
80% | 17.2 | 0.94 | 69.2 | 11.2 |
DMSO | 14.7 | 0.91 | 63.1 | 8.4 |
表2 不同溶剂制备的钙钛矿电池的光伏参数
Table 2 Photovoltaic parameters of devices prepared by mixed solvents with different volume ratios
Devices | JSC/(mA·cm-2) | VOC/V | FF/% | PCE/% |
---|---|---|---|---|
DMF | 15.4 | 0.91 | 66.3 | 9.3 |
15% | 18.9 | 0.95 | 70.3 | 12.6 |
30% | 20.9 | 0.99 | 72.8 | 15.1 |
60% | 20.2 | 0.96 | 71.9 | 13.9 |
80% | 17.2 | 0.94 | 69.2 | 11.2 |
DMSO | 14.7 | 0.91 | 63.1 | 8.4 |
[1] | KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
[2] | ETGAR L, GAO P, XUE Z, et al.Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.Journal of the American Chemical Society, 2012, 134(42): 17396-17399. |
[3] | LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science, 2012, 338(6107): 643-647. |
[4] | PARK N G.Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell.Journal of Physical Chemistry Letters, 2013, 4(15): 2423-2429. |
[5] | NOH J H, SANG H I, JIN H H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Letters, 2013, 13(4): 1764-1769. |
[6] | JEON N J, NOH J H, YANG W S, et al.Compositional engineering of perovskite materials for high-performance solar cells.Nature, 2015, 517(7535): 476-480. |
[7] | MATTEOCCI F, RAZZA S, DI G F, et al.Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process.Physical Chemistry Chemical Physics, 2014, 16(9): 3918-3923. |
[8] | JENG J Y, CHIANG Y F, LEE M H, et al.CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells.Advanced Materials, 2013, 25(27): 3727-3732. |
[9] | IM J H, JANG I H, PELLET N, et al.Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells.Nature Nanotechnology, 2014, 9(11): 927-932. |
[10] | ZHAO Y, ZHU K.Solution chemistry engineering toward high-efficiency perovskite solar cells.Journal of Physical Chemistry Letters, 2014, 5(23): 4175-4186. |
[11] | WU Y, ISLAM A, YANG X, et al.Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition.Energy & Environmental Science, 2014, 7(9): 2934-2938. |
[12] | WAKAMIYA A, ENDO M, SASAMORI T, et al.Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 Layer.Chemistry Letters, 2014, 43(5): 711-713. |
[13] | TANG Z, TANAKA S, ITO S, et al.Investigating relation of photovoltaic factors with properties of perovskite films based on various solvents.Nano Energy, 2016, 21: 51-61. |
[14] | JEON N J, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nature Materials, 2014, 13(9): 897-903. |
[15] | LI W, FAN J, LI J, et al.Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%.Journal of the American Chemical Society, 2015, 137(32): 10399-10405. |
[16] | CAI B, ZHANG W H, QIU J, et al.Solvent engineering of spin-coating solutions for planar-structured high-efficiency perovskite solar cells.Chinese Journal of Catalysis, 2015, 36(8): 1183-1190. |
[17] | YANG W S, NOH J H, JEON N J, et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.Science, 2015, 348(6240): 1234-1237. |
[18] | CHEN Q, ZHOU H, HONG Z, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.Journal of the American Chemical Society, 2014, 136(2): 622-625. |
[19] | ZHAO L, LUO D, WU J, et al.High-performance inverted planar heterojunction perovskite solar cells based on lead acetate precursor with efficiency exceeding 18%.Advanced Functional Materials, 2016, 26(20): 3508-3514. |
[20] | IKHMAYIES S J, AHMAD-BITAR R N. An investigation of the bandgap and Urbach tail of vacuum-evaporated SnO2 thin films.Physica Scripta, 2011, 84(5): 143-146. |
[21] | WASSNER T A, LAUMER B, MAIER S, et al. Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy. Journal of Applied Physics, 2009, 105(2): 023505-1-6. |
[22] | LIU F, DONG Q, WONG M K, et al. Is excess PbI2 beneficial for perovskite solar cell performance. Advanced Energy Materials, 2016, 6(7): 1502206-1-9. |
[23] | PARK B W, JAIN S M, ZHANG X, et al.Resonance Raman and excitation energy dependent charge transfer mechanism in halide- substituted hybrid perovskite solar cells.ACS Nano, 2015, 9(2): 2088-2101. |
[24] | PELLET N, GAO P, GREGORI G, et al.Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.Angewandte Chemie, 2014, 53(12): 3151-3157. |
[25] | CHEN Q, ZHOU H, SONG T B, et al.Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.Nano Letters, 2014, 14(7): 4158-4163. |
[26] | XING G, MATHEWS N, SUN S, et al.Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science, 2013, 342(6156): 344-347. |
[1] | 张万文, 罗建强, 刘淑娟, 马建国, 张小平, 杨松旺. 氧化锆间隔层的低温喷涂制备及其三层结构钙钛矿太阳能电池应用性能[J]. 无机材料学报, 2023, 38(2): 213-218. |
[2] | 柳琪, 朱璨, 谢贵震, 王俊, 张东明, 邵刚勤. Ce掺杂SrMgF4超结构多晶体的吸收/光致发光光谱[J]. 无机材料学报, 2022, 37(8): 897-902. |
[3] | 焦博新, 刘兴翀, 全子威, 彭永姗, 周若男, 李海敏. L-精氨酸掺杂钙钛矿太阳电池性能研究[J]. 无机材料学报, 2022, 37(6): 669-675. |
[4] | 林啊鸣, 孙宜阳. Cs2SnI6低指数晶面稳定性的第一性原理计算研究[J]. 无机材料学报, 2022, 37(6): 691-696. |
[5] | 黄郅航, 滕官宏伟, 铁鹏, 范德松. 钙钛矿陶瓷薄膜的电致变色特性[J]. 无机材料学报, 2022, 37(6): 611-616. |
[6] | 张国庆, 秦鹏, 黄富强. 空间限域铅离子与钙钛矿纳米晶间的可逆转换与信息存储应用[J]. 无机材料学报, 2022, 37(4): 445-451. |
[7] | 王万海, 周杰, 唐卫华. 钙钛矿薄膜缺陷调控策略在太阳能电池中的应用[J]. 无机材料学报, 2022, 37(2): 129-139. |
[8] | 张枫娟, 韩博宁, 曾海波. 钙钛矿量子点光伏与荧光聚光电池: 现状与挑战[J]. 无机材料学报, 2022, 37(2): 117-128. |
[9] | 明月, 胡玥, 梅安意, 荣耀光, 韩宏伟. 醋酸铅添加剂在印刷钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2022, 37(2): 197-203. |
[10] | 焦志翔, 贾帆豪, 王永晨, 陈建国, 任伟, 程晋荣. 基于机器学习的BiFeO3-PbTiO3-BaTiO3固溶体居里温度预测[J]. 无机材料学报, 2022, 37(12): 1321-1328. |
[11] | 徐婷婷, 李云云, 王谦, 王京康, 任国浩, 孙大志, 吴云涛. 低成本溶液法制备厘米级Cs3Cu2I5单晶及其闪烁发光性能[J]. 无机材料学报, 2022, 37(10): 1129-1134. |
[12] | 杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78. |
[13] | 刘雯雯, 胡志蕾, 王立, 曹梦莎, 张晶, 张婧, 张帅, 袁宁一, 丁建宁. L-3-(4-吡啶基)-丙氨酸钝化钙钛矿太阳电池界面缺陷[J]. 无机材料学报, 2021, 36(6): 629-636. |
[14] | 张晓燕, 刘馨玥, 闫金华, 谷耀行, 齐西伟. 钙钛矿型(La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3高熵氧化物陶瓷的制备及性能研究[J]. 无机材料学报, 2021, 36(4): 379-385. |
[15] | 董正明, 李修, 陈晨, 曹明贺, 易志国. NBT-BNT陶瓷的光致形变性能[J]. 无机材料学报, 2021, 36(3): 277-282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||