无机材料学报 ›› 2017, Vol. 32 ›› Issue (5): 517-522.DOI: 10.15541/jim20160422

• • 上一篇    下一篇

三嗪对CVD石墨烯n型掺杂的研究

刘 颖1, 2, 戴 丹2, 江 南2   

  1. (1. 上海大学 材料科学与工程学院, 上海 200072; 2. 中国科学院 宁波材料技术与工程研究所, 宁波 315201)
  • 收稿日期:2016-07-18 修回日期:2016-10-19 出版日期:2017-05-20 网络出版日期:2017-05-02
  • 作者简介:刘 颖(1990–), 女, 硕士研究生. E-mail: liuy@nimte.ac.cn
  • 基金资助:
    浙江省自然科学基金(Q15E020007);宁波市自然科学基金(201501HJ-B01248);国际科技合作专项(S2015ZR1100)

Synthesis of the Nitrogen-doped CVD Graphene through Triazine

LIU Ying1, 2, DAI Dan2, JIANG Nan2   

  1. (1. Shanghai University School of Materials Science and Engineering, Shanghai 200072, China; 2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China)
  • Received:2016-07-18 Revised:2016-10-19 Published:2017-05-20 Online:2017-05-02
  • About author:LIU Ying. E-mail: liuy@nimte.ac.cn
  • Supported by:
    Zhejiang Provincial Natural Science Foundation of China (Q15E020007);Ningbo Natural Science Foundation (201501HJ-B01248);Program of International S&T Cooperation (S2015ZR1100)

摘要:

以化学气相沉积(CVD)制备的单层石墨烯为原料, 小分子三嗪为掺杂剂, 采用吸附掺杂的方式, 在低温下对石墨烯实现n型掺杂。利用拉曼光谱(Raman)、X射线光电子能谱分析(XPS)、原子力显微镜(AFM)、紫外分光光度计(UV)和霍尔效应测试仪(Hall)对样品的形貌、结构及电学性能进行表征。结果表明: 该方法简单安全, 能够对石墨烯实现均匀的n型掺杂, 掺杂石墨烯的透光率达到95%。掺杂后石墨烯的特征峰G峰和2D峰向高波数移动。掺杂180 min后, 载流子浓度达到4×1012/cm2, 接近掺杂前的载流子浓度, 掺杂后的石墨烯在450℃的退火温度下具有可逆能力, 其表面电阻在300℃以下具有较好的稳定性。

关键词: CVD石墨烯, 三嗪, n型掺杂, 载流子浓度, 表面电阻

Abstract:

Nitrogen-doped graphene (N-graphene) was prepared via molecular doping from symTriazine molecules at low temperature. The phase structure, morphology and electrical property were characterized by Raman spectroscopy (Raman), X-ray photoelectron spectroscope(XPS), atomic force microscope (AFM), ultraviolet spectrophotometer(UV), and Hall tester. Here the method provides a simple and safe process to grow N-graphene. The morphology of N-graphene retains good uniformity, and the transmittance of the graphene is 95% in the range from 300 nm to 800 nm. The typical graphene peaks G-band and 2D-band both upshift after doping. The hole-carrier concentration is decreased immediately after Triazine decoration. After exposure to Triazine for 3 h, the charge-carrier concentration of N-graphene remains as high as 4×1012/cm2, which approaching the pristine Chemical Vapor Deposition (CVD) graphene’s carrier concentration due to the abundant molecular doping. After N-graphene annealed at 450℃, a hole-carrier concentration of ~8×1012/cm2 can be regenerated. The sheet resistance of N-graphene can stay steady at 300℃. The mechanism of Triazine doping is that Triazine is an electron-rich aromatic molecule due to the incorporation of N atoms in the aromatic ring, and some negative charges are expected to transfer onto the graphene. This research provides a simple method to obtain N-graphene doping for future application in electrical devices.

Key words: CVD graphene, triazine, nitrogen-doped, carrier concentration, sheet resistance

中图分类号: