[1] |
SARAVANAN K, RAMAR V, BALAYA P, et al.Li(MnxFe1-x)PO4/C (x=0.5, 0.75 and 1) nanoplates for lithium storage application.Journal of Materials Chemistry, 2011, 21(38): 14925-14935.
|
[2] |
YANG W C, BI Y J, QIN Y P, et al.LiMn0.8Fe0.2PO4/C cathode material synthesized via co-precipitation method with superior high-rate and low-temperature performances for lithium-ion batteries.Journal of Power Sources, 2015, 275: 785-791.
|
[3] |
NGUYEN TTD, DIMESSO L, CHERKASHININ G, et al.Synthesis and characterization of LiMn1-xFexPO4/carbon nanotubes composites as cathodes for Li-ion batteries.Ionics, 2013, 19(9): 1229-1240.
|
[4] |
CHEN J, ZhAO N, LI G D, et al. High-rate and long-term cycling capabilities of LiFe0.4Mn0.6PO4/C composite for lithium-ion batteries.Journal of Solid State Electrochemistry, 2015, 19(5): 1535-1540.
|
[5] |
MIAO C, BAI P F, JIANG Q Q, et al.A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery.Journal of Power Sources, 2014, 246: 232-238.
|
[6] |
YANG S L, HU M J, XI L J, et al.Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries.ACS Applied Materials & Interfaces, 2013, 5(18): 8961-8967.
|
[7] |
XU G, LI F, TAO Z H, et al.Monodispersed LiFePO4@C core-shell nanostructures for a high power Li-ion battery cathode.Journal of Power Sources, 2014, 246: 696-702.
|
[8] |
WANG T, YIN Y, LIU H W.Synthesis of FePO4 from Fe2O3 and its application in synthesizing cathode material LiFePO4.Journal of Inorganic Materials, 2013, 28(2): 207-211.
|
[9] |
QIN X Z, YANG G, GAO J, et al.LiFePO4/C cathode material modified by polyacrylamide.Journal of Inorganic Materials, 2016, 31(5): 517-522.
|
[10] |
GUO H, WU C Y, XIE J, et al.Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process.Journal of Materials Chemistry A, 2014, 2(27): 10581-10588.
|
[11] |
WANG Y R, YANG Y F, YANG Y B, et al.Enhanced electrochemical performance of unique morphological cathode material prepared by solvothermal method.Solid State Communications, 2010, 150(1/2): 81-85.
|
[12] |
QIN Z H, ZHOU X F, XIA Y G, et al.Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries.Journal of Materials Chemistry, 2012, 22(39): 21144-21153.
|
[13] |
LI L E, LIU J, CHEN L, et al.Effect of different carbon sources on the electrochemical properties of rod-like LiMnPO4-C nanocomposites.RSC Advances, 2013, 3(19): 6847-6852.
|
[14] |
WANG Y M, WANG F, WANG G J.Sol-Gel synthesis and electrochemical performance of LiMnPO4/C cathode material.Journal of Inorganic Materials, 2013, 28(4): 415-419.
|
[15] |
ZHONG Y J, LI J T, WU Z G, et al.LiMn0.5Fe0.5PO4 solid solution materials synthesized by rheological phase reaction and their excellent electrochemical performances as cathode of lithium ion battery.Journal of Power Sources, 2013, 234: 217-222.
|
[16] |
ZHANG B, WANG X J, LI H, et al.Electrochemical performances of LiFe1-xMnxPO4 with high Mn content.Journal of Power Sources, 2011, 196(16): 6992-6996.
|
[17] |
RAVNSBAEK DB, XIANG K, XING W, et al.Extended solid solutions and coherent transformations in nanoscale olivine cathodes.Nano Letters, 2014, 14(3): 1484-1491.
|
[18] |
HONG Y, TANG Z L, HONG Z J, et al.LiMn1-xFexPO4 (x = 0, 0.1, 0.2) nanorods synthesized by a facile solvothermal approach as high performance cathode materials for lithium-ion batteries.Journal of Power Sources, 2014, 248: 655-659.
|
|
HUANG Y P, LI X, CHEN Z, et al. Effect of sintering temperature on electrochemical performance of LiFe0.4Mn0.6PO4/C cathode materials. Materials Research Innovations, 2014, 18(4): S4-2-5.
|
[19] |
SU J, WU X L, GUO Y G.Preparation and electrochemical properties of LiMn0.8Fe0.2PO4/C nanocomposite.Journal of Inorganic Materials, 2013, 28(11): 1248-1254.
|
[20] |
CHI Z X, ZHANG W, WANG X S, et al.Accurate surface control of core-shell structured LiMn0.5Fe0.5PO4@C for improved battery performance.Journal of Materials Chemistry A, 2014, 2(41): 17359-17365.
|
[21] |
HUANG Y P, TAO T, CHEN Z, et al.Excellent electrochemical performance of LiFe0.4Mn0.6PO4microspheres produced using a double carbon coating process.Journal of Materials Chemistry A, 2014, 2(44): 18831-18837.
|
[22] |
BEZZA I, KAUS M, HEINZMANN R, et al.Mechanism of the delithiation/lithiation process in LiFe0.4Mn0.6PO4: in situ and ex situ investigations on long-range and local structures.The Journal of Physical Chemistry C, 2015, 119(17): 9016-9024.
|
[23] |
ZHOU X, DENG Y F, WAN L N, et al.A surfactant-assisted synthesis route for scalable preparation of high performance of LiFe0.15Mn0.85PO4/C cathode using bimetallic precursor.Journal of Power Sources, 2014, 265: 223-230.
|
[24] |
YI H H, HU C L, FANG H S, et al.Optimized electrochemical performance of LiMn0.9Fe0.1-xMgxPO4/C for lithium ion batteries.Electrochimica Acta, 2011, 56: 4052-4057.
|
[25] |
DUAN J G, HU G R, CAO Y B, et al.Synthesis of high-performance Fe-Mg-co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique.Ionics, 2016, 22: 609-619.
|
[26] |
ZONG J, PENG Q W, YU J P, et al.Novel precursor of Mn(PO3(OH))·3H2O for synthesizing LiMn0.5Fe0.5PO4 cathode material.Journal of Power Sources, 2013, 228: 214-219.
|
[27] |
NIU C J, MENG J S, WANG X P, et al.General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis.Nature Communications, 2015, 6: 7402.
|
[28] |
WANG X P, NIU C J, MENG J S, et al.Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability.Advanced Energy Materials, 2015, 5(17): 1500716.
|