[1] |
LABERTY C, ZHAO F, SWLDER-LYONS K E, et al. High-performance solid oxide fuel cell cathodes with lanthanum- nickelate-based composites.Electrochem. Solid-State Lett., 2007, 10(10): B170-B174.
|
[2] |
ZHAO H, LI Q, SUN L P.Ln2MO4 cathode materials for solid oxide fuel cells.Sci. China: Chem., 2011, 54(6): 898-910.
|
[3] |
MAUVY F, LALANNE C, BASSAST J M, et al.Electrode properties of Ln2NiO4+δ (Ln=La, Nd, Pr) AC impedance and DC polarization studies. J. Electrochem. Soc., 2006, 153(8): A1547-A1553.
|
[4] |
MONTENEGRO-HERNANDEZ A, VEGA-CASTILLO J, MOGNI L, et al.Thermal stability of Ln2NiO4+δ (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes.Int. J. Hydrogen Energy, 2011, 36(24): 15704-15714.
|
[5] |
PHILIPPEAU B, MAUVY F, MAZATAUD C, et al. Comparative study of electrochemical properties of mixed conducting Ln2NiO4+δ (Ln = La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3-δ as SOFC cathodes associated to Ce0.9Gd0.1O2-δ, La0.8Sr0.2Ga0.8Mg0.2O3-δ and La9Sr1Si6O26.5 electrolyte. Solid State Ionics, 2013, 249-250: 17-25.
|
[6] |
SAYERS R, LIU J, RUSTUMJI B, et al.Novel K2NiF4-type materials for solid oxide fuel cells: compatibility with electrolytes in the intermediate temperature range.Fuel Cells, 2008, 8(5): 338-343.
|
[7] |
MONTENEGRO-HERNANDEZ A, MOGNI L, CANEIRO A.Microstructure and reactivity effects on the performance of Nd2NiO4+δ oxygen electrode on Ce0.9Gd0.1O1.95 electrolyte.Int. J. Hydrogen Energy, 2012, 37(23): 18290-18301.
|
[8] |
SKINNER S J, KILNER J A.Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ.Solid State Ionics, 2000, 135(1/4): 709-712.
|
[9] |
KHARTON V V, VISKUP A P, KOVALEVSKY A V, et al.Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4- type structure.Solid State Ionics, 2001, 143(3/4): 337-353.
|
[10] |
BOEHM E, BASSAT J M, DORDOR P, et al.Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+δ oxides.Solid State Ionics, 2005, 176(37/38): 2717-2725.
|
[11] |
LALANNEA C, PROSPERIB G, BASSATA J M, et al.Neodymium-deficient nickelate oxide Nd1.95NiO4+δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells.J. Power Sources, 2008, 185(2): 1218-1224.
|
[12] |
LI S, TU H, YU L, et al.Fabrication and electrochemical characterizations of Nd2NiO4+δ-Ce0.8Gd0.2O2-δ composite cathodes for anode-supported intermediate temperature solid oxide fuel cells.Electrochim. Acta, 2016, 212: 303-312.
|
[13] |
CHEN T, ZHOU Y, YUAN C, et al.Impregnated Nd1.95NiO4+δ scandia stabilized zirconia composite cathode for intermediate-temperature solid oxide fuel cells.J. Power Sources, 2014, 269: 812-817.
|
[14] |
SAVANIU C D, MILLER D N, IRVINE J T S. Scale up and anode development for La-doped SrTiO3 anode-supported SOFCs.J. Am. Ceram. Soc., 2013, 96(6): 1718-1723.
|
[15] |
CAO Y, GU H T, CHEN H, et al.Preparation and characterization of Nd2-xSrxCoO4+δ cathodes for intermediate-temperature solid oxide fuel cell.Int. J. Hydrogen Energy, 2010, 35(11): 5594-5600.
|
[16] |
KIM J, KIM G, MOON J, et al.Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy.Solid State Ionics, 2001, 143(3/4): 379-389.
|
[17] |
KHANDALE A P, LAJURKAR R P, BHOGA S S.Nd1.8Sr0.2NiO4+δ: Ce0.9Gd0.1O2-δ composite cathode for intermediate temperature solid oxide fuel cells.Int. J. Hydrogen Energy, 2014, 39(33): 19039-19050.
|