无机材料学报 ›› 2017, Vol. 32 ›› Issue (4): 425-430.DOI: 10.15541/jim20160391

• • 上一篇    下一篇

SiC/Al双连通复合装甲材料抗侵彻性能宏-微观跨尺度模拟

李国举, 范群波, 王扬卫, 史 然   

  1. (北京理工大学 材料学院, 冲击环境材料技术国家级重点实验室, 北京100081)
  • 收稿日期:2016-06-20 修回日期:2016-08-23 出版日期:2017-04-20 网络出版日期:2017-03-24
  • 作者简介:李国举(1986–), 男, 博士研究生. E-mail: guojuzuishuai@163.com
  • 基金资助:
    国家自然科学基金(51571031)

Multi-scale Simulation of Interpenetrating SiC/Al Composite Armor Materials Subjected to Impact Loading Using a Macro-micro Approach

LI Guo-Ju, FAN Qun-Bo, WANG Yang-Wei, SHI Ran   

  1. (National Key Laboratory of Science and Technology on Materials under Shock and Impact, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China)
  • Received:2016-06-20 Revised:2016-08-23 Published:2017-04-20 Online:2017-03-24
  • About author:LI Guo-Ju. E-mail: guojuzuishuai@163.com
  • Supported by:
    Natural National Science Foundation of China (51571031)

摘要:

SiC/Al双连通复合装甲材料所具有的复杂三维微结构特征对其宏观抗侵彻性能具有重要影响。本文建立了从宏观靶试模型中SiC/Al靶板的典型微区提取动态边界条件, 并作用于相应微观组织模型的跨尺度数值模拟方法, 研究了SiC/Al靶板在抗侵彻过程中不同典型局部微区内的动态微结构损伤及失效过程。研究表明: 在弹着点正下方位置, 多个裂纹源萌生于两相界面处靠近陶瓷相一侧, 随后沿与弹道平行的方向扩展并形成轴向主裂纹; 在与弹体轴线呈45°位置, 裂纹除了在靠近界面处的陶瓷相一侧萌生外, 在陶瓷相内部也出现了与弹道方向垂直的多条水平裂纹, 界面裂纹与水平裂纹进一步扩展并桥连成多个锥形主裂纹。相关模拟方法为将来该类材料的微结构优化提供了一种新的技术途径。

关键词: SiC/Al双连通复合材料, 宏-微观跨尺度模拟, 动态损伤及失效过程

Abstract:

Since the macro anti-penetration performance of interpenetrating SiC/Al composite is controlled mainly by the complex three-dimensional microstructure features. Muti-scale simulation of SiC/Al composite under impact loading was performed by using a macro-micro method. The simulation for macro SiC/Al composite armor plate under impact loading was employed first, then the dynamic boundary conditions from the typical local regions in SiC/Al composite were obtained and applied on its microstructural finite element model as a loading condition to analyze the dynamic damage and failure process in the typical local regions. The results revealed that, in the local region right below the impact point, the cracks initiated mainly near the SiC/Al interface, just on the side of the SiC ceramic phase, then continuously propagated parallel to the direction of the bullet axis and eventually converged together to form axial main cracks. Meanwhile, in the region at a 45º angle to the direction of bullet axis, the cracks initiated not only near the SiC/Al interface but also inside the ceramic phase. Subsequently, these cracks propagated, bridged and finally formed cone main cracks. This simulation method provides a feasible technical approach for microstructure topology optimization of the material.

Key words: interpenetrating SiC/Al composites, macro-micro multi-scale simulation, dynamic damage and failure process

中图分类号: