无机材料学报 ›› 2017, Vol. 32 ›› Issue (3): 269-274.DOI: 10.15541/jim20160345
宋 佳, 徐 瑛, 貊艳平, 李永安
收稿日期:
2016-05-30
修回日期:
2016-09-16
出版日期:
2017-03-20
网络出版日期:
2017-02-24
作者简介:
宋 佳(1990–), 女, 硕士研究生. E-mail: doudousj@whut.edu.cn
基金资助:
SONG Jia, XU Ying, MO Yan-Ping, LI Yong-An
Received:
2016-05-30
Revised:
2016-09-16
Published:
2017-03-20
Online:
2017-02-24
About author:
SONG Jia. E-mail: doudousj@whut.edu.cn
摘要:
助剂修饰是促进光生电子和空穴分离的有效途径。采用新型无定型Ti(IV)空穴助剂与高电子传输率的还原石墨烯(rGO)电子助剂相结合, 以水热-浸渍沉积法合成Ti(IV)和rGO共修饰的高效片状钨酸铋(Ti(IV)-rGO/Bi2WO6)可见光光催化剂。结果表明, 与单独Bi2WO6相比, 助剂Ti(IV)或rGO修饰的Bi2WO6可见光光催化降解甲基橙(MO)性能增强。双助剂共修饰的Bi2WO6光催化剂光催化活性更高, 当Ti(IV)含量为5wt%时, 双助剂共修饰的Bi2WO6光催化剂性能最佳, 光催化速率常数达2.2×10-2 min-1, 是纯Bi2WO6的88倍。光催化性能增强主要归因于新型Ti(IV)空穴助剂与rGO电子助剂的协同作用, 即Ti(IV)快速转移光生空穴, 同时rGO快速传递并转移电子。本文有望为新型助剂修饰光催化材料研究提供新思路。
中图分类号:
宋 佳, 徐 瑛, 貊艳平, 李永安. Ti(IV)-石墨烯双助剂协同效应增强钨酸铋光催化性能[J]. 无机材料学报, 2017, 32(3): 269-274.
SONG Jia, XU Ying, MO Yan-Ping, LI Yong-An. Enhanced Photocatalytic Activity of Bi2WO6 by the Synergistic Action of Ti(IV) and Graphene Bi-cocatalysts[J]. Journal of Inorganic Materials, 2017, 32(3): 269-274.
图1 助剂负载的各样品合成示意图
Fig. 1 Schematic diagram illustrating the preparation of various samples(a) Bi2WO6; (b) Ti(IV)/Bi2WO6; (c) rGO/Bi2WO6; (d) Ti(IV)-rGO/ Bi2WO6
图3 样品的FESEM照片和EDX图谱
Fig. 3 FESEM images and EDX results (insert) of different samples(a) Bi2WO6; (b) Ti(IV)/Bi2WO6; (c) rGO/Bi2WO6; (d) Ti(IV)-rGO/Bi2WO6
图6 不同样品的紫外可见漫反射图谱
Fig. 6 UV-vis DRS of different samples(a) Bi2WO6; (b) Ti(IV)/Bi2WO6; (c) rGO/Bi2WO6; (d) Ti(IV)-rGO/Bi2 WO6 and Energy band diagram of Bi2WO6(insert)
图7 不同样品的光催化性能图
Fig. 7 Photocatalytic performance of the decomposition of MO by different samples(a) Bi2WO6; (b) Ti(IV)/Bi2WO6; (c) rGO/Bi2WO6; (d) Ti(IV)(1%)- rGO/Bi2WO6; (e) Ti(IV)(3%)-rGO/Bi2WO6; (f) Ti(IV)-rGO/Bi2WO6; (g) Ti(IV)(7%)-rGO/Bi2WO6
图9 Ti(IV)-rGO/Bi2WO6光催化性能及降解苯酚的循环性能
Fig. 9 The photocatalytic performance of Ti(IV)-rGO/Bi2 WO6 for the decomposition of MO and phenol and recycled performance for the degradation of phenol(insert)
[1] | YU S H, LIU B, MO M S, et al.General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach.Advanced Functional Materials, 2003, 13(13): 639-647. |
[2] | NAGIRNYI V, KIM M, KOTLOV A, et al. Separation of excitonic and electron-hole processes in metal tungstates. Journal of Luminescence, 2003, 102-103(5): 597-603. |
[3] | YANG Y G, WANG Z, XU J H, et al.Influence of surfactants on morphology of lead tungstate crystalline.Journal of Synthetic Crystals, 2008, 37(1): 240-242. |
[4] | HE J Y, WANG W M, LONG F, et al.Hydrothermal synthesis of hierarchical rose-like Bi2WO6 microspheres with high photocatalytic activities under visible-light irradiation.Materials Science and Engineering: B, 2012, 177(12): 967-974. |
[5] | GUI M S, WANG P F, YUAN D, et al.Synthesis and visible-light photocatalytic activity of Bi2WO6/g-C3N4 composite photocatalysts.Chinese Journal of Inorganic Chemistry, 2013, 29(10): 2057-2064. |
[6] | HU S P, XU C Y, ZHEN L.Solvothermal synthesis of Bi2WO6 hollow structures with excellent visible-light photocatalytic properties.Materials Letters, 2013, 95(3): 117-120. |
[7] | WANG X, CHANG L, WANG J, et al.Surfactant-free hydrothermal synthesis of flower-like Bi2WO6 with enhanced solar-light- induced photocatalytic performance.Micro & Nano Letters, 2012, 7(11): 1129-1132. |
[8] | LAI K, ZHU Y, LU J, et al.N- and Mo-doping Bi2WO6 in photo-catalytic water splitting.Computational Materials Science, 2013, 67(4): 88-92. |
[9] | ZHANG L, WANG W Z, SHANG M, et al.Bi2WO6@carbon/ Fe3O4 microspheres: preparation, growth mechanism and application in water treatment.Journal of Hazardous Materials, 2009, 172(2/3): 1193-1197. |
[10] | COLÓN G, LÓPEZ S M, HIDALGO M C, et al. Sunlight highly photoactive Bi2WO6-TiO2 heterostructures for rhodamine B degradation.Chemical Communications, 2010, 46(40): 4809-4811. |
[11] | WANG C Y, ZHU L Y, CHANG C, et al.Preparation of magnetic composite photocatalyst Bi2WO6/CoFe2O4 by two-step hydrothermal method and its photocatalytic degradation of bisphenol A.Catalysis Communications, 2013, 37(13): 92-95. |
[12] | ZHOU Y, ZHANG Q, LIN Y H, et al.One-step hydrothermal synthesis of hierarchical Ag/Bi2WO6 composites: in situ growth monitoring and photocatalytic activity studies.Science China Chemistry, 2013, 56(4): 435-442. |
[13] | ZHANG N, YANG M Q, LIU S Q, et al.Waltzing with the versatile platform of graphene to synthesize composite photocatalysts.Chemical Reviews, 2015, 115(18): 10307-10377. |
[14] | THANASIS GEORGIOU, RASHID JALIL, BELLE BRANSON D, et al.Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics.Nature Nanotechnology, 2013, 8(2): 100-103. |
[15] | HUANG X, QI X Yi, BOEY F, et al.Graphene-based composites.Chem. Soc. Rev., 2012, 41(2): 666-686. |
[16] | LI H, SONG Z N, ZHANG X J, et al.Ultrathin, molecular-sieving grapheme oxide membranes for selective hydrogen separation.Science, 2013, 342(6154): 95-98. |
[17] | YANG J, VOIRY D, AHN S J,et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced grapheme oxide as catalysts for enhanced hydrogen evolution.Angew. Chem. Int. Ed.2013, 52(51): 13751-13754. |
[18] | GUO D, WANG P, ZHENG Q Y, et al.One-step synthesis of flower-like Bi2WO6-rGO composite photocatalysts.Journal of Inorganic Materials, 2014, 29(11): 1193-1198. |
[19] | ZHANG F X, YAMAKATA A, MAEDA K, et al.Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. Journal of the American Chemical Society, 2012, 134(20): 8348-8351. |
[20] | SHENG J Y, LI X J, XU Y M.Generation of H2O2 and OH radicals on Bi2WO6 for phenol.ACS Catalysis, 2014, 4(3): 732-737. |
[21] | TOWNSEND T K, BROWNING N D, OSTERLOH F E.Nanoscale strontium titanate photocatalysts for overall water splitting.ACS Nano, 2012, 6(8): 7420-7426. |
[22] | TOWNSEND T K, BROWNING N D, OSTERLOH F E.Overall photocatalytic water splitting with NiOx-SrTiO3 - a revised mechanism.Energy & Environmental Science, 2012, 5(11): 9543-9550. |
[23] | HIGASHI M, DOMEN K, ABE R.Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation.J. Am. Chem. Soc., 2012, 134(16): 6968-6971. |
[24] | LIU M, INDE R, NISHIKAWA M, et al.Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts.ACS Nano, 2014, 8(7): 7229-7238. |
[25] | EISENBERG D, AHN H S, BARD A J.Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide.J. Am. Chem. Soc., 2014, 136(40): 14011-14014. |
[26] | HU S, SHANER M R, BEARDSLEE J A, et al.Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation.Science, 2014, 344(6187), 1005-1009. |
[27] | YU H G, CHEN W Y, WANG X F, et al.Enhanced photocatalytic activity and photoinduced stability of Ag-based photocatalysts: the synergistic action of amorphous-Ti(IV) and Fe(III) cocatalysts.Applied Catalysis B: Environmental, 2016, 187: 163-170. |
[28] | WANG P, WANG J, WANG X F, et al. One-step synthesis of easy- recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2013, 132-133(12): 452-459. |
[29] | ZHANG G Y, FENG Y, WU Q S, et al.Facile fabrication of flower-shaped Bi2WO6 superstructures and visible-light-driven photocatalytic performance.Materials Research Bulletin, 2012, 47(8): 1919-1924. |
[30] | MA H W, SHEN J F, SHI M, et al. Significant enhanced performance for rhodamine B, phenol and Cr(VI) removal by Bi2WO6 nanocomposites via reduced graphene oxide modification. Applied Catalysis B: Environmental, 2012, 121-122: 198-205. |
[31] | SUN S M, WANG W Z, ZHANG L.Bi2WO6 quantum dots decorated reduced grapheme oxide: Improved charge separation and enhanced photoconversion efficiency.Journal of Physical Chemistry C, 2013, 117(18): 9113-9120. |
[32] | RANGEL R, BARTOLO-PÉREZ P, Gómez-Cortés A, et al. Comparison Between γ-Bi2MoO6 and Bi2WO6 catalysts in the CO Oxidation.Journal of Materials Synthesis & Processing, 2001, 9(4): 207-212. |
[33] | YU M, LIU P R, SUN Y J, et al.Fabrication and characterization of graphene-Ag nano particles composites.Journal of Inorganic Materials, 2012, 372(1): 128-131. |
[34] | CHEN Y, LIU G C, LI Z Y, et al.Citric acid-assisted hydrothermal synthesis of Bi2WO6 nanosheets for highly efficient degradation of methyl orange under visible light irradiation.Chinese Journal of Catalysis, 2011, 32(10): 1631-1638. |
[35] | XU Y, MO Y P, TIAN J, et al.The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogendoped graphene/TiO2 nanocomposites.Applied Catalysis B: Environmental, 2016, 181: 810-817. |
[36] | YU H G, LIU R, WANG X F, et al. Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst. Applied Catalysis B: Environmental, 2012, 111-112(6): 326-333. |
[37] | SUN Q, YU H G, WANG X F, et al.Facile synthesis of porous Bi2WO6 nanosheets with high photocatalytic performance.Dalton Transactions, 2015, 44(32): 14532-14539. |
[1] | 陈赛赛, 庞雅莉, 王娇娜, 龚䶮, 王锐, 栾筱婉, 李昕. 绿-黄可逆电热致变色织物的制备及其性能[J]. 无机材料学报, 2022, 37(9): 954-960. |
[2] | 孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659. |
[3] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[4] | 王虹力, 王男, 王丽莹, 宋二红, 赵占奎. 功能化石墨烯担载型AuPd纳米催化剂增强甲酸制氢反应[J]. 无机材料学报, 2022, 37(5): 547-553. |
[5] | 董淑蕊, 赵笛, 赵静, 金万勤. 离子化氨基酸对氧化石墨烯膜渗透汽化过程中水选择性渗透的影响[J]. 无机材料学报, 2022, 37(4): 387-394. |
[6] | 蒋丽丽, 徐帅帅, 夏宝凯, 陈胜, 朱俊武. 缺陷调控石墨烯复合催化剂在氧还原反应中的作用[J]. 无机材料学报, 2022, 37(2): 215-222. |
[7] | 吴静, 余立兵, 刘帅帅, 黄秋艳, 姜姗姗, ANTON Matveev, 王连莉, 宋二红, 肖蓓蓓. NiN4/Cr修饰的石墨烯电化学固氮电极[J]. 无机材料学报, 2022, 37(10): 1141-1148. |
[8] | 李铁, 李玥, 王颖异, 张珽. 石墨烯-铁酸铋纳米晶复合材料的制备及其催化性能研究[J]. 无机材料学报, 2021, 36(7): 725-732. |
[9] | 向晖, 全慧, 胡艺媛, 赵炜骞, 徐波, 殷江. 类石墨烯单层结构ZnO和GaN的压电特性对比研究[J]. 无机材料学报, 2021, 36(5): 492-496. |
[10] | 李豪, 唐志红, 卓尚军, 钱荣. 基于ZIF8/rGO的高性能NO2室温传感器[J]. 无机材料学报, 2021, 36(12): 1277-1282. |
[11] | 何俊龙, 宋二红, 王连军, 江莞. DFT方法研究一氧化氮在铬掺杂石墨烯上的吸附行为[J]. 无机材料学报, 2021, 36(10): 1047-1052. |
[12] | 罗燚,冯军宗,冯坚,姜勇刚,李良军. 新型碳材料质子交换膜燃料电池Pt催化剂载体的研究进展[J]. 无机材料学报, 2020, 35(4): 407-415. |
[13] | 张伟,高鹏,侯成义,李耀刚,张青红,王宏志. 基于ZnO复合材料的芯片式pH和温度传感器[J]. 无机材料学报, 2020, 35(4): 416-422. |
[14] | 赵超锋, 金佳人, 霍英忠, 孙陆, 艾玥洁. 氧化石墨烯吸附水体中酚类有机污染物的分子动力学模拟[J]. 无机材料学报, 2020, 35(3): 277-283. |
[15] | 张塞, 邹英桐, 陈中山, 李冰峰, 顾鹏程, 文涛. 可见光驱动RGO/g-C3N4活化过硫酸盐降解水中双酚A[J]. 无机材料学报, 2020, 35(3): 329-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||