[1] |
CHEN L D, XIONG Z, BAI S Q.Recent progress of thermoelectric nano-composites.Journal of Inorganic Materials, 2010, 25(6): 561-568.
|
[2] |
TANG Y S, BAI S Q, REN D D.Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn solder.Journal of Inorganic Materials, 2015, 3(30): 256-260.
|
[3] |
ROGL G, ROGL P.Mechanical properties of skutterudites.Science of Advanced Materials, 2011, 3(4): 517-538.
|
[4] |
RAVI V, FIRDOSY S, CAILLAT T, et al. Mechanical Properties of Thermoelectric Skutterudites. AIP Conference Proceedings, 2008, 969: 656-662.
|
[5] |
SLACK G A, ROWE D M, ed. CRC Handbook of Thermoelectrics. Boca Raton: CRC Press, 1995.
|
[6] |
CHEN L D, KAWAHARA T, TANG X F,et al.Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12.Journal of Applied Physics, 2001, 90(4): 1864-1868.
|
[7] |
SHI X, YANG J, SALVADOR R J,et al.Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports.Journal of the American Chemical Society, 2011, 133(20): 7837-7846.
|
[8] |
DING J, LIU R H, GU H,et al.Study on the high temperature stability of YbyCo4Sb12/Yb2O3 composite thermoelctric material.Journal of Inorganic Materials, 2014, 29(2): 209-214.
|
[9] |
ROGL G, GRYTSIV A, ROGL P,et al.N-type skutterudites (R,Ba,Yb)yCo4Sb12(R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0.Acta Materialia, 2014, 63: 30-43.
|
[10] |
ROGL G, GRYTSIV A, ROGL P,et al.Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively.Acta Materialia, 2014, 76: 434-448.
|
[11] |
ZHANG Q H, HUANG X Y, BAI S Q,et al.Thermoelectric devices for power generation: recent progress and future challenges.Advanced Engineering Materials, 2016, 18(2): 194-213.
|
[12] |
GEIM A K.Graphene: status and prospects.Science, 2009, 324(5934): 1530-1534.
|
[13] |
LI J L, CHEN B B, ZHANG W,et al.Recent progress in ceramic/graphene bulk composites.Journal of Inorganic Materials, 2014, 29(3): 225-236.
|
[14] |
WALKER L S, MAROTTO V R, RAFIEE M A, et al.Toughening in graphene ceramic composites.ACS Nano, 2011, 5(4): 3182-3190.
|
[15] |
RAMIREZA C, MIRANZO P, BELMONTE M,et al.Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets.Journal of the European Ceramic Society, 2014, 34(2): 161-169.
|
[16] |
LIU J, YAN H X, JIANG K.Mechanical properties of graphene platelet-reinforced alumina ceramic composites.Ceramic International, 2013, 39(6): 6215-6221.
|
[17] |
FAN Y C, IGARASHI G, JIANG W,et al.Highly strain tolerant and tough ceramic composite by incorporation of graphene.Carbon, 2015, 90: 274-283.
|
[18] |
ZONG P A, CHEN X H, ZHU Y W,et al.Construction of a 3D-rGO network-wrapping architecture in a YbyCo4Sb12/rGO composite for enhancing the thermoelectric performance.Journal of Material Chemistry A, 2015, 3(16): 8643-8649.
|
[19] |
STANKOVICH S, DIKIN D A, PINER R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.Carbon, 2007, 45(7): 1558-1565.
|
[20] |
MARCANO D C, KOSYNKIN D V, BERLIN J M,et al.Improved synthesis of graphene oxide.ACS Nano, 2010, 4(8): 4806-4814.
|
[21] |
RAMÍREZ C, VEGA-DIAZ S M, MORELOS-GÓMEZ A,et al.Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering.Carbon, 2013, 57: 425-432.
|