无机材料学报 ›› 2016, Vol. 31 ›› Issue (12): 1295-1300.DOI: 10.15541/jim20160089
杨勇彬1, 罗德礼2, 饶咏初1, 郭文胜2
收稿日期:
2016-02-04
修回日期:
2016-04-19
出版日期:
2016-12-16
网络出版日期:
2016-11-23
YANG Yong-Bin1, LUO De-Li2, RAO Yong-Chu1, GUO Wen-Sheng2
Received:
2016-02-04
Revised:
2016-04-19
Published:
2016-12-16
Online:
2016-11-23
摘要:
采用电弧熔炼的方法, 制备了Ti1.0Cr1.5V1.7合金。通过SEM、EDS和XRD对合金的形貌、组成及其氢化物的结构进行表征。结果表明, 合金组成不均匀, 存在网状的析出相。吸氢过程中的相转变只与吸氢量有关, 而与氢同位素种类无关。分离因子(αH-D)测试表明, 压力对αH-D的影响不大, 但氘丰度的增加会导致αH-D的降低。温度对αH-D的影响较复杂。αH-D在213 K时有极大值2.29。当温度高于213 K时, αH-D的实验值与谐振模型的计算值符合得很好, 且lnαH-D与1/T之间存在线性关系; 当温度低于213 K时, 实验值与计算值之间存在较大差异。Ti1.0Cr1.5V1.7合金氢化物的DSC分析结果表明, αH-D在低温时的突变与相转变之间并无直接的联系。
中图分类号:
杨勇彬, 罗德礼, 饶咏初, 郭文胜. Ti1.0Cr1.5V1.7合金的氢同位素效应[J]. 无机材料学报, 2016, 31(12): 1295-1300.
YANG Yong-Bin, LUO De-Li, RAO Yong-Chu, GUO Wen-Sheng. Hydrogen Isotope Effects in Ti1.0Cr1.5V1.7 Alloy[J]. Journal of Inorganic Materials, 2016, 31(12): 1295-1300.
B | A | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Ti | 35.62 | 43.24 | 56.26 | 16.86 | 18.53 | 16.36 |
V | 33.05 | 26.88 | 21.07 | 45.94 | 44.75 | 46.28 |
Cr | 31.33 | 29.87 | 22.67 | 37.20 | 36.72 | 37.36 |
表1 EDS分析的Ti1.0Cr1.5V1.7合金组成/at%
Table 1 Chemical composition of Ti1.0Cr1.5V1.7 analyzed by EDS/at%
B | A | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Ti | 35.62 | 43.24 | 56.26 | 16.86 | 18.53 | 16.36 |
V | 33.05 | 26.88 | 21.07 | 45.94 | 44.75 | 46.28 |
Cr | 31.33 | 29.87 | 22.67 | 37.20 | 36.72 | 37.36 |
Temperature /K | 77 | 103 | 133 | 155 | 173 | 183 | 193 | 203 | 213 | 243 | 273 | 303 | 333 | 373 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
αH-D | 1.02 | 1.21 | 1.13 | 1.05 | 1.54 | 1.81 | 1.93 | 2.05 | 2.29 | 1.89 | 1.6 | 1.41 | 1.3 | 1.17 |
表2 不同温度下的分离因子(0.3 MPa, D 3%)
Table 2 Separation factors with different temperature (0.3 MPa, D 3%)
Temperature /K | 77 | 103 | 133 | 155 | 173 | 183 | 193 | 203 | 213 | 243 | 273 | 303 | 333 | 373 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
αH-D | 1.02 | 1.21 | 1.13 | 1.05 | 1.54 | 1.81 | 1.93 | 2.05 | 2.29 | 1.89 | 1.6 | 1.41 | 1.3 | 1.17 |
Materials | Temperature /K | A | B | Reference |
---|---|---|---|---|
Pd | 175-330 | -0.023 | -202 | [19] |
TiMn1.5 | 195-296 | -0.75 | 295 | [19] |
LaNi5 | 223-323 | -0.53 | 193 | [19] |
ZrMn2 | 240-300 | -0.477 | 240 | [19] |
ZrCr2 | 273-373 | -1.5 | 580 | [19] |
Ti1.0Cr1.5V1.7 | 213-373 | -0.74 | 335 | This work |
表3 不同材料A与B的值
Table 3 Values of A and B for different materials
Materials | Temperature /K | A | B | Reference |
---|---|---|---|---|
Pd | 175-330 | -0.023 | -202 | [19] |
TiMn1.5 | 195-296 | -0.75 | 295 | [19] |
LaNi5 | 223-323 | -0.53 | 193 | [19] |
ZrMn2 | 240-300 | -0.477 | 240 | [19] |
ZrCr2 | 273-373 | -1.5 | 580 | [19] |
Ti1.0Cr1.5V1.7 | 213-373 | -0.74 | 335 | This work |
[1] | KOU HUA-QIN, HUANG ZHI-YONG, LUO WEN-HUA,et al. Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes . Appl. Energy, 2015, 145: 27-35. |
[2] | LUO DE-LI, SONG JIANG-FENG, HUANG GUO-QIANG,et al. Progress of China’s TBM tritium technology. Fusion Eng. Des., 2012, 87(7/8): 1261-1267. |
[3] | FUKADA S, FUCHINOUE K, NISHIKAWA M.Isotope separation factor and isotopic exchange rate between hydrogen and deuterium of palladium.J. Nucl. Mater., 1995, 226(3): 311-318. |
[4] | LUO WEI-FANG, COWGILL D F.Separation factors for hydrogen isotopes in palladium hydride.J. Phys. Chem. C, 2013, 117(27): 13861-13871. |
[5] | WISWALL R H, REILLY J J.Inverse hydrogen isotope effects in some metal hydride systems.Inorg. Chem., 1972, 11(7): 1691-1696. |
[6] | ALDRIDGE F T.Gas chromatographic separation of hydrogen isotopes using metal hydrides. J.Less-Common Met., 1985, 108: 131-150. |
[7] | ANDREEV B M, MAGOMEDBEKOV E, SELIVANENKO I L.Separation of isotopes of light elements in a gas-solid phase system. 1. Isotope effects in a hydrogen-metal hydride and intermetallic-compound hydride system.Atom. Energy, 1998, 84(2): 114-121. |
[8] | SICKING G, MAGOMEDBEKOV E, HEMPELMANN R.Tracer experiments on the exchange equilibrium of tritium between hydrogen gas and the hydrogen-storage material TiMnl.5-hydride.Ber. Bunsenges . Phys. Chem., 1981, 85: 686-692. |
[9] | JAT R A, SAWANT S G, RAJAN M B,et al.Hydrogen isotope effect on storage behavior of U2Ti and UZr2.3. J. Nucl. Mater., 2013, 443: 316-320. |
[10] | TANAKA J, WISWALL R H, REILLY J J.Hydrogen isotope effects in titanium alloy hydrides.Inorganic Chemistry, 1978, 17(2): 498-500. |
[11] | KUMAR A, SHASHIKALA K, BANERJEE S,et al. Effect of cycling on hydrogen storage properties of Ti2VCr alloy. Int. J. Hydrogen Energy, 2012, 37(4): 3677-3682. |
[12] | AOKI M, NORITAKE T, ITO A,et al. Improvement of cyclic durability of Ti-V-Cr alloy by Fe substitution. Int. J. Hydrogen Energy, 2011, 36(19): 12329-12332. |
[13] | KURIIWA T, MARUYAMA T, KAMEGAWA A,et al. Effects of V content on hydrogen storage properties of V-Ti-Cr alloys with high desorption pressure. Int. J. Hydrogen Energy, 2010, 35(17): 9082-9087. |
[14] | AKIBA E, IBA H.Hydrogen absorption by laves phase related BCC solid solution.Intermetallics, 1998, 6(6): 461-470. |
[15] | PEI P, SONG X P, LIU J,et al. The effect of rapid solidification on the microstructure and hydrogen storage properties of V35Ti25Cr40 hydrogen storage alloy. Int. J. Hydrogen Energy, 2009, 34(19): 8094-8100. |
[16] | LIN H C, LIN K M, WU K C,et al. Cyclic hydrogen absorption- desorption characteristics of TiCrV and Ti0.8Cr1.2V alloys. Int. J. Hydrogen Energy, 2007, 32(18): 4966-4972. |
[17] | YU X B, CHEN J Z, WU Z,et al. Effect of Cr content on hydrogen storage properties for Ti-V based BCC-phase alloys. Int. J. Hydrogen Energy, 2004, 29(13): 1377-1381. |
[18] | YANG YONG-BIN, LUO DE-LI, GUO WEN-SHEN,et al. Hydrogen isotope effects in Ti-V-Cr alloy hydrides. J. Phys. Chem. C, 2015, 119(7): 3481-3487. |
[19] | ANDREEV B M, MAGOMEDBEKOV E P, SICKING G H.Interaction of Hydrogen Isotopes with Transition Metals and Intermetallic Compounds. Springer-Verlag: Berlin, Heidelberg, NY, 1996. |
[20] | SAZONOV A B, MAGOMEDBEKOV E P.Concentration dependence of the separation factor of hydrogen isotopes in ternary and pseudoternary systems H2-H-X-Y-H.Atom. Energy, 1999, 87(1): 519-525. |
[21] | UREY H C, RITTENBERG D.Some thermodynamic properties of the (HH2)-H-1, (HH2)-H-2 molecules and compounds containing the H-2 atom.J. Chem. Phys., 1933, 1(2): 137-143. |
[1] | 王梦桃, 索军, 方东, 易健宏, 刘意春, OlimRUZIMURADOV. ITO/TiO2纳米管阵列复合材料的可见光催化性能[J]. 无机材料学报, 0, (): 178-. |
[2] | 孙晨, 赵昆峰, 易志国. 甲烷完全催化氧化研究进展[J]. 无机材料学报, 0, (): 117-. |
[3] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 0, (): 3-. |
[4] | 吐尔洪·木尼热, 赵红刚, 马玉花, 齐献慧, 李钰宸, 闫沉香, 李佳文, 陈平. 单晶WO3/红磷S型异质结的构建及光催化活性研究[J]. 无机材料学报, 2023, 38(6): 701-707. |
[5] | 甘洪宇, 冯燕, 杨德鸿, 田煜彬, 李阳, 邢涛, 李智, 赵学波, 代鹏程. 杂原子掺杂生物质碳催化丙烷直接脱氢制丙烯[J]. 无机材料学报, 2022, 37(10): 1058-1064. |
[6] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[7] | 刘雪晨, 曾滴, 周沅逸, 王海鹏, 张玲, 王文中. 改性氮化碳光催化剂在生物质氧化反应中的应用[J]. 无机材料学报, 2022, 37(1): 38-44. |
[8] | 陈小梅, 陈颖, 袁霞. 核壳材料Co3O4@SiO2催化环己基过氧化氢分解[J]. 无机材料学报, 2022, 37(1): 65-71. |
[9] | 李铁, 李玥, 王颖异, 张珽. 石墨烯-铁酸铋纳米晶复合材料的制备及其催化性能研究[J]. 无机材料学报, 2021, 36(7): 725-732. |
[10] | 范君, 江雪, 焦毅, 陈宇圣, 王健礼, 陈耀强. 不同碱辅助的沉积沉淀法对三效催化剂稳定性的影响[J]. 无机材料学报, 2021, 36(6): 659-664. |
[11] | 安伟佳, 李静, 王淑瑶, 胡金山, 蔺在元, 崔文权, 刘利, 解珺, 梁英华. Fe(III)/rGO/Bi2MoO6复合光催化剂制备及光催化芬顿协同降解苯酚[J]. 无机材料学报, 2021, 36(6): 615-622. |
[12] | 肖翔, 郭少柯, 丁成, 张志洁, 黄海瑞, 徐家跃. CsPbBr3@TiO2核壳结构纳米复合材料用作水稳高效可见光催化剂[J]. 无机材料学报, 2021, 36(5): 507-512. |
[13] | 刘亚鑫, 王敏, 沈梦, 王强, 张玲霞. 铋掺杂提高氧化铈中氧空位浓度增强CO2光催化还原性能[J]. 无机材料学报, 2021, 36(1): 88-94. |
[14] | 王举汉,文雄,刘成超,张煜华,赵燕熹,李金林. 多级孔Co/Al-SiO2催化剂制备及其费-托合成催化性能[J]. 无机材料学报, 2020, 35(9): 999-1004. |
[15] | 丁昇, 宁锴, 袁斌霞, 潘卫国, 尹诗斌, 刘建峰. 碱性溶液中不同微观结构的Fe-N/C催化剂氧还原性能的稳定性对比研究[J]. 无机材料学报, 2020, 35(8): 953-958. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||