[1] |
ZHANG Q H, AI X, WANG W J, et al.Preparation of 1-D/3-D structured AgNWs/Bi2Te3 nanocomposites with enhanced thermoelectric properties.Acta Materialia, 2014, 73(4): 37-47.
|
[2] |
CHEN LI-DONG, XIONG ZHEN, BAI SHENG-QIANG.Recent progress of thermoelectric nano-composites.Journal of Inorganic Materials, 2010, 25(6): 561-568.
|
[3] |
JOSEPH R S, DUCK Y C, MERCOURI G K.New and old concepts in thermoelectric materials.Angew. Chem. Int. Ed., 2009, 48(46): 8616-8639.
|
[4] |
ZHANG Q L, JANG W J, LI J L, et al.Preparation and thermoelectric properties of multi-walled carbon nanotube/polyaniline hybrid nanocomposites.J. Mater. Chem. A, 2013, 1(39): 12109-12114.
|
[5] |
HICKS L D, DRESSELHAUS M S.Effect of quantum-well structures on the thermoelectric figure of merit.Phys. Rev. B, 1993, 47: 12727.
|
[6] |
VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al.Thin-film thermoelectric devices with high room-temperature figures of merit.Nature, 2001, 413: 597-602.
|
[7] |
HARMAN T C, TAYLOR P J, WALSH M P, et al.Quantum dot superlattice thermoelectric materials and devices.Science, 2002, 297(5590): 2229-2232.
|
[8] |
HU F, CAI Q, LIAO F, et al.Recent advancements in nanogenerators for energy harvesting.Small, 2015, 11(42): 5611-5628.
|
[9] |
ALVARADO A, ATTAPATTU J, ZHANG Y, et al.Thermoelectric properties of rocksalt ZnO from first-principles calculations.J. Appl. Phys., 2015, 118: 165101.
|
[10] |
OHTAKI M, TSSUBOTA T, EGUCHI K, et al.High-temperature thermoelectric properties of (Zn1-x Al x)O.J. Appl. Phys., 1996, 79: 1816.
|
[11] |
ZHANG D B, ZHANG B P, YE D S, et al.Enhanced Al/Ni co-doping and power factor in textured ZnO thermoelectric ceramics prepared by hydrothermal synthesis and spark plasma sintering.Journal of Alloys and Compounds, 2016, 656: 784-792.
|
[12] |
ONG K P, SINGH D J, WU P.Analysis of the thermoelectric properties of n-type ZnO.Phys. Rev. B, 2011, 83: 115110.
|
[13] |
LIANG X.Thermoelectric transport properties of Fe-enriched ZnO with high-temperature nanostructure refinement. ACS Appl. Mater. Interfaces, 2015, 7(15): 7927-7937.
|
[14] |
JOOD P, PELECKIS G, WANG X, et al.Effect of gallium doping and ball milling process on the thermoelectric performance of n-type ZnO.Journal of Materials Research, 2012, 27(17): 2278-2285.
|
[15] |
MALEN J A, YEE S K, MAJUMDAR A, et al.Fundamentals of energy transport, energy conversion, and thermal properties in organic-inorganic heterojunctions.Chemical Physics Letters, 2010, 491(4/5/6): 109-122.
|
[16] |
SEE K C, FESER J P, CHEN C E, et al.Water-processable polymer-nanocrystal hybrids for thermoelectrics.Nano Letters, 2010, 10(11): 4664-4667.
|
[17] |
HE M, GE J, LIN Z, et al.Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface.Energy & Environmental Science, 2012, 5(8): 8351-8358.
|
[18] |
DRAXL C A, MAJEWSKI J A, VOGL P, et al.First-principles studies of the structural and optical properties of crystalline poly(para-phenylene).Physical Review B, 1995, 51: 9668-9676.
|
[19] |
SHACKLETTE L W, ECKHARDT H, CHANCE R R, et al.Solid‐state synthesis of highly conducting polyphenylene from crystalline oligomers.The Journal of Chemical Physics, 1980, 73: 4098.
|
[20] |
LEE Y S, KERTESZ M.The effect of heteroatomic substitutions on the band gap of polyacetylene and polyparaphenylene derivatives.The Journal of Chemical Physics, 1988, 88: 2609.
|
[21] |
FANG Y J, SHA J, WANG Z L, et al.Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays.Applied Physics Letters, 2011, 98: 033103.
|
[22] |
BAXTER J B, SCHMUTTENMAER C A.Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy.The Journal of Physical Chemistry B, 2006, 110(50): 25229-25239.
|