无机材料学报 ›› 2016, Vol. 31 ›› Issue (10): 1023-1030.DOI: 10.15541/jim20160131
周佳佳, 邱建荣
收稿日期:
2016-03-08
修回日期:
2016-04-14
出版日期:
2016-10-20
网络出版日期:
2016-09-23
作者简介:
周佳佳(1985–), 女, 博士, 讲师. E-mail: zhoujiajia@zju.edu.cn
基金资助:
ZHOU Jia-Jia, QIU Jian-Rong
Received:
2016-03-08
Revised:
2016-04-14
Published:
2016-10-20
Online:
2016-09-23
About author:
ZHOU Jia-Jia. E-mail: zhoujiajia@zju.edu.cn
Supported by:
摘要:
稀土离子掺杂上转换纳米颗粒具有独特的光谱学特征, 在太阳能利用、三维显示和生物医学等众多领域有着广泛的应用价值。然而, 传统基于统计平均效应的上转换纳米颗粒群体性光谱学研究忽视了众多来自单个颗粒的非均一性信息。单颗粒光谱检测成为一种突破上述瓶颈, 获取源自纳米颗粒非均一性本征结构的独特光谱现象, 并实现单个纳米颗粒器件化的有效技术手段。对于单个纳米颗粒电子行为的研究能够揭示来自微结构本身的信息, 甚至能够在没有介质干扰下清晰洞见材料本征结构和外部作用的相互影响, 从而为制备高质量的纳米颗粒提供指导意义。同时, 单颗粒光谱检测也具有在微纳米尺度探索晶体结构各向异性光学特性及一些尚未预见的新型光学现象的强大能力。本文介绍了单个纳米颗粒上转换发光表征的重要性以及常见的几种检测方法。论述了单颗粒上转换发光的一些最新研究成果, 并对未来发展方向进行了展望。
中图分类号:
周佳佳, 邱建荣. 单个纳米颗粒的上转换光谱现象研究[J]. 无机材料学报, 2016, 31(10): 1023-1030.
ZHOU Jia-Jia, QIU Jian-Rong. Upconversion Spectroscopic Investigation of Single Nanoparticles[J]. Journal of Inorganic Materials, 2016, 31(10): 1023-1030.
图2 光纤颗粒负载法检测上转换发光实验系统示意图[9]
Fig. 2 Schematic experimental configuration for capturing UC luminescence of nanoparticles using a suspended-core microstructured optical-fiber dip sensor[9]
图3 光镊法进行单颗粒上转换荧光探测系统示意图[35]
Fig. 3 Schematic diagram of the experimental setup used for luminescence acquisition of an optically trapped upconversion nanoparticle[35]
UCNPs | Particle size/nm | Monitoring wavelength/nm | Assessing mode | Power density /(W·cm-2) | Time range /min | Ref. |
---|---|---|---|---|---|---|
β-NaYF4: Yb3+, Er3+ | ~27 | 550/650 | photostability | 5 ×106 | 60 | [24] |
NaGdF4: Yb3+, Er3+@NaGdF4 | ~40 | 550/650 | photostability | 150 | 240 | [23] |
YVO4: Yb3+, Er3+ | ~39 | 520/550/650 | photostability | 8×103 | 8 | [41] |
NaYF4 : Yb3+, Ho3+, Tm3+@NaYF4 | ~22 | 450/475/545/645 | photostability | 8×106 | 360 | [42] |
β-NaYF4: Yb3+/Er3+ | ~10 | 550/650 | photostability | 106 | 60 | [29] |
β-NaGdF4: Yb3+, Er3+@NaYF4 | ~20 | 520/550/650 | brightness | / | / | [43] |
β-NaGdF4: Yb3+, Er3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~39 | 550 | photostability | / | 15 | [14] |
β-NaGdF4: Yb3+, Tm3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~38 | 480 | ||||
NaYbF4: Er3+@NaYF4@SiO2@rhodamine B isothiocyanate-doped SiO2 | ~24 | 650 |
表1 单个上转换纳米颗粒的光稳定性和亮度评价
Table 1 Photostability and brightness assessment of single UCNPs
UCNPs | Particle size/nm | Monitoring wavelength/nm | Assessing mode | Power density /(W·cm-2) | Time range /min | Ref. |
---|---|---|---|---|---|---|
β-NaYF4: Yb3+, Er3+ | ~27 | 550/650 | photostability | 5 ×106 | 60 | [24] |
NaGdF4: Yb3+, Er3+@NaGdF4 | ~40 | 550/650 | photostability | 150 | 240 | [23] |
YVO4: Yb3+, Er3+ | ~39 | 520/550/650 | photostability | 8×103 | 8 | [41] |
NaYF4 : Yb3+, Ho3+, Tm3+@NaYF4 | ~22 | 450/475/545/645 | photostability | 8×106 | 360 | [42] |
β-NaYF4: Yb3+/Er3+ | ~10 | 550/650 | photostability | 106 | 60 | [29] |
β-NaGdF4: Yb3+, Er3+@NaYF4 | ~20 | 520/550/650 | brightness | / | / | [43] |
β-NaGdF4: Yb3+, Er3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~39 | 550 | photostability | / | 15 | [14] |
β-NaGdF4: Yb3+, Tm3+@NaGdF4 @SiO2@NPTAT-doped SiO2 | ~38 | 480 | ||||
NaYbF4: Er3+@NaYF4@SiO2@rhodamine B isothiocyanate-doped SiO2 | ~24 | 650 |
图4 (a) 系列Tm掺杂纳米颗粒上转换发光积分强度随激发功率变化关系; (b) 掺杂20%Yb3+-20%Er3+(蓝色)/2%Er3+(红色)的8 nm单颗粒上转换强度随功率的变化关系。照片对应左图I、II、III功率下的共聚焦显微荧光图像; (c) 单个β-NaYF4: 20% Yb3+-2% Tm3+纳米颗粒在~1.1×107 W/cm2 980nm激光激发下的是上转换荧光光谱图[13, 30, 44]
Fig. 4 (a) Integrated upconrersion luminescence intensity (~400- 850 nm) as a function of excitation irradiance for a series of Tm3+-doped nanoparticles. (b) Luminescence intensity of single 8 nm UCNPs with 20% (blue circles) and 2% (red circles) Er3+, each with 20%Yb3+, plotted as a function of excitation intensity. Confocal luminescence images taken at points shown in (b) of single UCNPs containing a mixture of 2% and 20% Er3+. (c) Emission spectra of single β-NaYF4: 20% Yb3+-2% Tm3+ nanoparticle excited with 980 nm laser illumination at the power density of ~1.1×107 W/cm2[13, 30, 44]
图5 (a~d)单根β-NaYF4: Tm3+-Yb3+微米棒的上转换发射光谱图, 分别对应Tm3+跃迁: (a) 1G4→3F4, (b) 3F3→3H6, 1D2→3F3, (c) 1G4→3H5, (d)3H4→3H6; (e~h)各跃迁荧光强度随发射偏振角的变化关系; (i, j)单个纳米盘其晶体学a轴(i)或c轴(j)平行水平面时, 上转换发射光谱随激发偏振角变化; (k)单根NaYF4: Er3+, Yb3+纳米棒其处于两个相垂直发射偏振角度时的发射光谱图。曲线1和曲线2表示发射偏振角平行和垂直纳米棒光轴。插图表示电场下两个不同偏振方向, 产生截然不同的光谱; (l)二维图谱表示红光波段的发射强度随发射偏振角的变化关系[27,31]
Fig. 5 (a-d) Emission spectra of UC from β-NaYF4: Tm3+-Yb3+ single micro-rod in the transitions of Tm3+: (a) 1G4→3F4, (b) 3F3→3H6, 1D2→3F3, (c) 1G4→3H5, (d) 3H4→3H6, respectively. (e-h) The dependence of the corresponding spectra on emission polarization angle (φem). (i, j) UC luminescence spectra of a single nanodisk, whose a axis or c axis is parallel to horizontal plane, recorded at excitation polarization angles varying from 0° to 360°, with no polarizer placed in the detection part. (k) Emission spectra from a single NaYF4: Er3+, Yb3+ UCNR immobilized on a surface for two perpendicular emission polarization angles. Purple (blue) line represents recovered emission parallel (perpendicular) to the optical axis of the NaYF4: Er3+, Yb3+ UCNR. Inset represents these two different polarizations of the electric field that gives the two distinct spectra. (l) Two dimensional map represents emission intensity of red band as a function of emission polarization angle[27, 31]
图6 荧光寿命调节示范, 即NaYF4: Yb, Tm上转换纳米颗粒的时间分辨共聚焦图像[10]
Fig. 6 Lifetime tuning scheme and time-resolved confocal images for NaYF4: Yb, Tm upconversion nanocrystals[10]
图7 (a) AFM图像展示纳米组装方式: 60 nm金纳米球在AFM针尖拨动下靠近上转换纳米颗粒。黄色箭头表示激发光的偏振方向; (b) 上转换纳米颗粒和金属小球靠近(曲线1)、远离(曲线2)时的发射光谱; (c) 上转换绿光(左侧)和红光(右侧)的上升(上侧)及衰减(下侧)曲线; (d) 单个上转换纳米颗粒针尖增强效应示意图; (e) 针尖缩回和靠近时的上转换发射光谱; (f) 660 nm处上转换发光在针尖靠近和离开时的荧光衰减曲线[26, 55]
Fig. 7 (a) AFM image showing the nanoassembly approach: The 60 nm gold nanosphere is attached to the UCNPs with the help of the AFM tip. The yellow arrow indicates the polarization axis of the excitation light. (b) Upconversion emission spectra of the nanoparticle without (violet curve) and with (blue curve) the gold nanosphere in close vicinity. (c) Rise (upper) and decay times (lower) of the green (left) and red (right) emission with the color code as in part (b). (d) Schematic of the tip-enhancement of a single Upconversion nanoparticle. (e) Upconversion emission spectra with retracted and approached tip, respectively. (f) Decay curves for red emission detected with and without tip at 660 nm[26, 55]
[1] | AUZEL F.Upconversion and anti-Stokes processes with f and d ions in solids.Chem. Rev. , 2004, 104(1): 139-173. |
[2] | WANG X, ZHUANG J, PENG Q, et al.A general strategy for nanocrystal synthesis.Nature, 2005, 437(7055): 121-124. |
[3] | WANG F, HAN Y, LIM C S, et al.Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping.Nature, 2010, 463(7284): 1061-1065. |
[4] | ZHANG F, LI J, SHAN J, et al.Shape, size, and phase-controlled rare-earth fluoride nanocrystals with optical up-conversion properties.Chem-Eur. J., 2009, 15(41): 11010-11019. |
[5] | YI G S, CHOW G M.Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence.Adv. Funct. Mater., 2006, 16(18): 2324-2329. |
[6] | LIU D, XU X, DU Y, et al.Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals.Nat. Commun. , 2016, 7: 10254. |
[7] | ZHOU B, SHI B, JIN D, et al.Controlling upconversion nanocrystals for emerging applications.Nat. Nanotechnol., 2015, 10(11): 924-936. |
[8] | WANG F, DENG R, WANG J, et al.Tuning upconversion through energy migration in core-shell nanoparticles.Nat. Mater., 2011, 10(12): 968-973. |
[9] | ZHAO J B, JIN D Y, SCHARTNER E P, et al.Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence.Nat. Nanotechnol., 2013, 8(10): 729-734. |
[10] | LU Y, ZHAO J, ZHANG R, et al.Tunable lifetime multiplexing using luminescent nanocrystals.Nat. Photonics, 2014, 8(1): 33-37. |
[11] | LU Y, LU J, ZHAO J, et al.On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays.Nat. Commun., 2014, 5: 3741. |
[12] | WANG J, DENG R, MACDONALD M A, et al.Enhancing multiphoton upconversion through energy clustering at sublattice level.Nat. Mater. , 2014, 13(2): 157-162. |
[13] | GARGAS D J, CHAN E M, OSTROWSKI A D, et al.Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging.Nat. Nanotechnol., 2014, 9(4): 300-305. |
[14] | ZHOU L, WANG R, YAO C, et al.Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers.Nat. Commun., 2015, 6: 6938. |
[15] | FERNEE M J, TAMARAT P, LOUNIS B.Spectroscopy of single nanocrystals.Chem. Soc. Rev. , 2014, 43(4): 1311-1337. |
[16] | SONNTAG M D, KLINGSPORN J M, ZRIMSEK A B, et al.Molecular plasmonics for nanoscale spectroscopy.Chem. Soc. Rev., 2014, 43(4): 1230-1247. |
[17] | CUI J, BEYLER A P, BISCHOF T S, et al.Deconstructing the photon stream from single nanocrystals: from binning to correlation.Chem. Soc. Rev., 2014, 43(4): 1287-1310. |
[18] | EMPEDOCLES S A, NEUHAUSER R, SHIMIZU K, et al.Photoluminescence from single semiconductor nanostructures.Adv. Mater., 1999, 11(15): 1243-1256. |
[19] | BLANTON S A, HINES M A, GUYOT-SIONNEST P.Photoluminescence wandering in single CdSe nanocrystals.Appl. Phys. Lett., 1996, 69(25): 3905-3907. |
[20] | NIRMAL M, DABBOUSI B O, BAWENDI M G, et al.Fluorescence intermittency in single cadmium selenide nanocrystals.Nature, 1996, 383(6603): 802-804. |
[21] | EMPEDOCLES S, BAWENDI M.Quantum-confined stark effect in single CdSe nanocrystallite quantum dots.Science, 1997, 278(5346): 2114-2117. |
[22] | PARK Y I, LEE K T, SUH Y D, et al.Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging.Chem. Soc. Rev., 2014, 44(6): 1302-1317. |
[23] | PARK Y I, KIM J H, LEE K T, et al.Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent.Adv. Mater., 2009, 21(44): 4467-4471. |
[24] | WU S W, HAN G, MILLIRON D J, et al.Non-blinking and photostable upconverted luminescence from single lanthanide- doped nanocrystals.Proc. Natl. Acad. Sci. USA, 2009, 106(27): 10917-10921. |
[25] | SCHIETINGER S, MENEZES L D, LAURITZEN B, et al.Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals.Nano Lett., 2009, 9(6): 2477-2481. |
[26] | SCHIETINGER S, AICHELE T, WANG H Q, et al.Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals.Nano Lett., 2010, 10(1): 134-138. |
[27] | ZHOU J J, CHEN G X, WU E, et al.Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 single nanorod.Nano Lett., 2013, 13(5): 2241-2246. |
[28] | KOLESOV R, XIA K, REUTER R, et al.Optical detection of a single rare-earth ion in a crystal.Nat. Commun., 2012, 3: 1029. |
[29] | OSTROWSKI A D, CHAN E M, GARGAS D J, et al.Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals.ACS Nano, 2012, 6(3): 2686-2692. |
[30] | ZHOU J J, CHEN G X, ZHU Y B, et al.Intense multiphoton upconversion of Yb3+-Tm3+ doped beta-NaYF4 individual nanocrystals by saturation excitation. J. Mater. Chem. C, 2015, 3(2): 364-369. |
[31] | CHEN P, SONG M, WU E, et al.Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates.Nanoscale, 2015, 7(15): 6462-6466. |
[32] | SCHARTNER E P, JIN D Y, EBENDORFF-HEIDEPRIEM H, et al.Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization.Nanoscale, 2012, 4(23): 7448-7451. |
[33] | SCHARTNER E P, JIN D, EBENDORFF-HEIDEPRIEM H, et al.Lanthanide upconversion nanocrystals within microstructured optical fibres; a sensitive platform for biosensing and a new tool for nanocrystal characterisation. Third Asia Pacific Optical Sensors Conference, 2012, 8351. |
[34] | SCHARTNER E P, JIN D Y, ZHAO J B, et al.Sensitive Detection of NaYF4: Yb/Tm Nanoparticles Using Suspended Core Microstructured Optical Fibers. Colloidal Nanocrystals for Biomedical Applications Viii, 2013: 8595. |
[35] | RODRIGUEZ-SEVILLA P, RODRIGUEZ-RODRIGUEZ H, PEDRONI M, et al.Assessing single upconverting nanoparticle luminescence by optical tweezers.Nano Lett. , 2015, 15(8): 5068-5074. |
[36] | RODRIGUEZ-SEVILLA P, LABRADOR-PAEZ L, WAWRZYN CZYK D, et al.Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy.Nanoscale, 2015, 8(1): 300-308. |
[37] | DICKSON R M, CUBITT A B, TSIEN R Y, et al.On/off blinking and switching behaviour of single molecules of green fluorescent protein.Nature, 1997, 388(6640): 355-358. |
[38] | NIRMAL M, DABBOUSI B, BAWENDI M, et al.Fluorescence intermittency in single cadmium selenide nanocrystals.Nature, 1996, 383(6603): 802-804. |
[39] | GALLAND C, GHOSH Y, STEINBRUCK A, et al.Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots.Nature, 2011, 479(7372): 203-207. |
[40] | BARNES M, MEHTA A, THUNDAT T, et al.On-off blinking and multiple bright states of single europium ions in Eu3+: Y2O3 nanocrystals.J. Phys. Chem. B, 2000, 104(26): 6099-6102. |
[41] | MIALON G, TURKCAN S, DANTELLE G, et al.High up-conversion efficiency of YVO4: Yb, Er nanoparticles in water down to the single-particle level.J. Phys. Chem. C, 2010, 114(51): 22449-22454. |
[42] | ZHANG F, SHI Q, ZHANG Y, et al.Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding.Adv. Mater., 2011, 23(33): 3775-3779. |
[43] | LI X, WANG R, ZHANG F, et al.Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency.Nano Lett., 2014, 14(6): 3634-3639. |
[44] | ZHAO J, JIN D, SCHARTNER E P, et al.Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence.Nat. Nanotechnol., 2013, 8(10): 729-734. |
[45] | ZHANG H, LI Y, LIN Y, et al.Composition tuning the upconversion emission in NaYF4: Yb/Tm hexaplate nanocrystals.Nanoscale, 2011, 3(3): 963-966. |
[46] | YIN A X, ZHANG Y W, SUN L D, et al.Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4 : Yb, Tm nanocrystals.Nanoscale, 2010, 2(6): 953-959. |
[47] | MAHALINGAM V, VETRONE F, NACCACHE R, et al.Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation.Adv. Mater., 2009, 21(40): 4025-4028. |
[48] | KR MER K W, BINER D, FREI G, et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors.Chemistry of Materials, 2004, 16(7): 1244-1251. |
[49] | LIANG L, WU H, HU H, et al.Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1-xYbxF4: Ln3+(Ln3+=Er3+ or Tm3+).J. Alloys Compd., 2004, 368(1): 94-100. |
[50] | ZHANG Y H, ZHANG L X, DENG R R, et al.Multicolor barcoding in a single upconversion crystal.J. Am. Chem. Soc., 2014, 136(13): 4893-4896. |
[51] | GLASS A M, LIAO P F, BERGMAN J G, et al.Interaction of metal particles with adsorbed dye molecules: absorption and luminescence.Opt. Lett., 1980, 5(9): 368-370. |
[52] | LAKOWICZ J R.Radiative decay engineering: biophysical and biomedical applications.Anal. Biochem., 2001, 298(1): 1-24. |
[53] | DULKEITH E, MORTEANI A C, NIEDEREICHHOLZ T, et al.Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects.Phys. Rev. Lett., 2002, 89(20): 203002. |
[54] | SABOKTAKIN M, YE X, OH S J, et al.Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation.ACS Nano, 2012, 6(10): 8758-8766. |
[55] | MAUSER N, PIATKOWSKI D, MANCABELLI T, et al.Tip-enhancement of up-conversion photoluminescence from rare- earth ion doped nanocrystals.ACS Nano, 2015, 9(4): 3617-3626. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[13] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[14] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||