无机材料学报 ›› 2016, Vol. 31 ›› Issue (10): 1013-1022.DOI: 10.15541/jim20160188
王连军, 周蓓莹, 顾士甲, 江 莞
收稿日期:
2016-03-28
修回日期:
2016-05-21
出版日期:
2016-10-20
网络出版日期:
2016-09-23
基金资助:
WANG Lian-Jun, ZHOU Bei-Ying, GU Shi-Jia, JIANG Wan
Received:
2016-03-28
Revised:
2016-05-21
Published:
2016-10-20
Online:
2016-09-23
Supported by:
摘要:
由于具有高透过率、优异的化学稳定性和易于机械加工等优势, 硅基氧化物玻璃是一种理想的基质材料。通过引入不同的发光组分, 获得不同光学性能的光功能玻璃被广泛应用于多个领域。然而, 这些发光组分在玻璃制备过程中易挥发、分解, 稳定性较低, 所以功能发光玻璃的制备技术仍面临着新的挑战。本文综述了掺杂铋离子、量子点及荧光粉硅基发光玻璃的发展现状及其制备技术。通过比较高温熔融法、溶胶-凝胶法、固相烧结法及放电等离子体烧结技术(简称SPS)的优缺点, 本文着重介绍了SPS技术应用于发光玻璃制备的研究进展及优势, 并对这种新制备技术的发展趋势进行了评述和展望。
中图分类号:
王连军, 周蓓莹, 顾士甲, 江 莞. 硅基氧化物发光玻璃及其制备技术研究进展[J]. 无机材料学报, 2016, 31(10): 1013-1022.
WANG Lian-Jun, ZHOU Bei-Ying, GU Shi-Jia, JIANG Wan. Research Progress on Silicon-based Luminescent Glass and Its Preparation Techniques[J]. Journal of Inorganic Materials, 2016, 31(10): 1013-1022.
图2 掺杂CdS纳米颗粒的介孔二氧化硅玻璃层随老化时间变化的荧光谱图[26]
Fig. 2 Photoluminescence (PL) spectral evolution of CdS NPs incorporated mesoporous SiO2 film with respect to ageing time as indicated in the figure in ambient condition[26]
图3 (a)不同热处理时间的掺杂CdSe量子点玻璃LEDs的色谱图, LEDs发光照片位于右侧; (b)和(c)为LED的电致发光与光致发光谱图[27]
Fig. 3 (a) CIE color coordination of the LEDs with silicate glass embedded CdSe QDs for varying duration times. The actual photographs of the LEDs were displayed on the right side. The insets (b) and (c) show EL + PL spectra of the LEDs[27]
图8 (a)SBA-15粉体, (b)经SPS于1173K烧结得到的样品, (c)经SPS于1293K烧结得到的硅基玻璃的TEM照片, (d)在温度与压力作用下, 介孔结构坍塌转换成玻璃的示意图[40]
Fig. 8 TEM images of original SBA-15 (a), sintered sample treated by SPS at 1173 K (b) and the silica glass sintered by SPS at 1293 K (c). Schematic of collapse of mesoporous structure and transformation to glass under combination of temperature and pressure(d)[40]
图10 (a)掺杂Ag纳米颗粒的SBA-15粉体的TEM图片,(b)Ag纳米颗粒的HRTEM图片, (c)烧结样品的TEM图片, (d)(c)图中黑点的EDX图谱[69]
Fig. 10 (a) TEM image of Ag NPs/SBA-15 and (b) HRTEM image of single Ag nanoparticle from (a); (c) TEM image of the sintered sample and (d) EDX spectrum taken on the dark spherical spots in (c)[69]
[1] | BEECROFT L L, OBER C K.Nanocomposite materials for optical applications.Chem. Mater., 1997, 9(6): 1302-1317. |
[2] | SNIZER E.Optical maser action of Nd3+ in a barium crown glass.Phys. Rev. Lett., 1961, 7(12): 444-446. |
[3] | ZHENG C, CHEN W Z, YE X Y, et al.Preparation and optical limiting properties of carbon nanotubes coated with Au nanoparticle composites embedded in silica gel-glass.Mater. Lett., 2011, 65(2): 150-152. |
[4] | WANG Y H, JIANG C Z, REN F, et al.Effect of ingredient on optical properties of Ag/Cu metal alloy nanoclusters in silica glass.J. Mater. Sci., 2007, 42(17): 7294-7298. |
[5] | BOURHIS K, MASSERA J, PETIT L, et al.Erbium-doped borosilicate glasses containing various amounts of P2O5 and Al2O3: Influence of the silica content on the structure and thermal, physical, optical and luminescence properties.Mater. Res. Bull., 2015, 70: 47-54. |
[6] | OLIVEIRA S L, LIMA S M, CATUNDA T, et al.High fluorescence quantum efficiency of 1.8 mum emission in Tm-doped low silica calcium aluminate glass determined by thermal lens spectrometry.Appl. Phys. Lett., 2004, 84(3): 359-361. |
[7] | GOLUBKOV V V, ONUSHCHENKO P A, ONUSHCHENKO A A.The kinetics of the formation of CdSe nanocrystals in sodium-zinc-silica glass.Glass. Phys. Chem. , 2014, 40(3): 291-297. |
[8] | TAKAHASHI T, ADACHI S.Synthesis of K2SiF6: Mn4+ red phosphor from silica glasses by wet chemical etching in HF/KMnO4 solution.Electrochem. Solid. St., 2009, 12(8): J69-J71. |
[9] | CHEN H, LIN H, XU J, et al.Chromaticity-tunable phosphor-in-glass for long-lifetime high-power warm w-LEDs.J. Mater. Chem. C, 2015, 3: 8080-8089. |
[10] | HAO S H, TANG H, WANG W X.Effect of anti-cracking agent on cracking property of SiO2 optical fiber preform by Sol-Gel method.Adv. Mater. Res., 2013, 763: 170-173. |
[11] | HICHAM EH, MOHAMED B, BRUNO C.Raman investigation of germanium- and phosphorus-doping effects on the structure of sol-gel silica-based optical fiber preforms.J. Mol. Struct., 2015, 1099: 77-82. |
[12] | ORRU R, LICHERI R, LOCCI A, et al.Consolidation/synthesis of materials by electric current activated/assisted sintering. Mat. Sci. Eng. R. 2009, 63(4): 127-287. |
[13] | WANG L, JIANG W, AND ZHANG J.Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering.Int. J. Refract. Met. H., 2013, 39: 103-112. |
[14] | FUJIMOTO Y, NAKATSUKA M.Infrared luminescence from bismuth-doped silica glass.Jpn. J. Appl. Phys. Par. 2., 2001, 40(3B): L279-L281. |
[15] | YANG R, MAO M F, ZHANG Y.Broadband near-infrared emission from Bi-Er-Tm Co-doped germanate glasses.J. Non-cryst. Solids., 2011, 357(11/12/13): 2396-2399. |
[16] | YANG Z W, SHANG J H, SONG Z G, et al.Influence of B2O3 on broad infrared emissions from aluminosilicophosphate glass.Adv. Appl. Ceram., 2011, 110(4): 215-218. |
[17] | KULESHOV N V, SHCHERBITSKY V G, MIKHAILOV V P, et al.Spectroscopy and excited-state absorption of Ni2+-doped MgAl2O4.J. Lumin., 1997, 71(4): 265-268. |
[18] | XIAN F, TANABE S.Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses.Optic. Mater., 2002, 20(1): 63-72. |
[19] | SUN H, ZHOU J, AND QIU J.Recent advances in bismuth activated photonic materials.Prog. Mater. Sci., 2014, 64: 1-72. |
[20] | REN J J, YANG L Y, QIU J R, et al.Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses.Solid State Commun., 2006, 140(1): 38-41. |
[21] | RESCH G U, GRABOLLE M, CAVALIERE J S, et al.Quantum dots versus organic dyes as fluorescent labels.Nat. Methods, 2008, 5(9): 763-775. |
[22] | MONTE A F G. Semiconductor doped glasses.J. Ceram. Soc. Jpn., 2008, 116(1358): 1033-1039. |
[23] | ZIEGLER J, XU S, KUCUR E, et al.Silica-coated InP/ZnS nanocrystals as converter material in white LEDs.Adv. Mater., 2008, 20(21): 4068-4073. |
[24] | CAO Y, ZHANG A, MA Q, et al.Application of hybrid SiO2-coated CdTe nanocrystals for sensitive sensing of Cu2+ and Ag+ ions.Luminescence, 2013, 28(3): 287-293. |
[25] | HAN N, LIU C, ZHANG J, et al.Infrared photoluminescence from lead sulfide quantum dots in glasses enriched in sulfur.J. Non-cryst. Solids., 2014, 391: 39-42. |
[26] | MISHRA M K, MANDAL A, SAHA J, et al.CdS nanoparticles incorporated onion-like mesoporous silica films: ageing-induced large stokes shifted intense PL emission.Opt. Mater., 2013, 35(12): 2604-2612. |
[27] | HAN K, SUKEUN Y, WOON J C.CdS and CdSe Quantum dot-embedded silicate glasses for LED color converter. Int. J. Appl. Glass. Sci., 2015, 6(2): 103-108. |
[28] | SOHN I S, UNITHRATTIL S, IM W B.Stacked quantum dot embedded silica film on a phosphor plate for superior performance of white light-emitting diodes.ACS Appl. Mater. Inter., 2014, 6(8): 5744-5748. |
[29] | MENEGHESSO G, LEVADA S, ZANONI E, et al.Reliability of visible GaN LEDs in plastic package.Microlelectron. Reliab., 2003, 43: 1737-1742. |
[30] | YANAGISAWA T, KOJIMA T.Long-term accelerated current operation of white light-emitting diodes.J. Lumin., 2005, 114: 39-42. |
[31] | PIAO X, MACHIDA K, HORIKAWA T, et al.Preparation of CaAlSiN3: Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties.Chem. Mater., 2007, 19(18): 4592-4599. |
[32] | YANES A C, DELCASTILLO J.Enhanced emission via energy transfer in RE co-doped SiO2-KYF4 nano-glass-ceramics for white LEDs.J. Alloys Compd., 2016, 658(15): 170-176. |
[33] | YE S, XIAO F, PAN Y X, et al.Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties.Mat. Sci. Eng. R., 2010, 71(1): 1-34. |
[34] | CHEN D Q, WAN Z Y, ZHOU Y, et al.Bulk glass ceramics containing Yb3+/Er3+: beta-NaGdF4 nanocrystals: Phase-separation- controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior.J. Alloys. Compd., 2015, 638: 21-28. |
[35] | WANG J, TSAI C C, CHENG W C, et al.High thermal stability of phosphor-converted white light emitting diodes employing Ce: YAG-doped glass.IEEE J. Sel. Topics Quantum Electron., 2011, 17(3): 741-746. |
[36] | TSAI C C, CHENG W C, CHANG J K, et al.Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes.J. Display Technol., 2013, 9(6): 427-432. |
[37] | ZHANG R, LIN H, YU Y L, et al.A new-generation color converter for high-power white LED: transparent Ce3+: YAG phosphor-in-glass.Laser. Photonics. Rev., 2014, 8(1): 158-164. |
[38] | TSAI C C.Thermal aging performance analyses of high color rendering index of glass-based phosphor-converted white-light- emitting diode.IEEE T. Device. Mat. Re., 2015, 15(4): 617-620. |
[39] | WANG L J, JIANG W, CHEN L D, et al.Formation of a unique glass by spark plasma sintering of a zeolite.J. Mater. Res., 2009, 24(10): 3241-3245. |
[40] | ZHANG X, YU X W, ZHOU B Y, et al.Sinterability enhancement by collapse of mesoporous structure of SBA-15 in fabrication of highly transparent silica glass.J. Am. Ceram. Soc., 2015, 98(4): 1056-1059. |
[41] | 王连军, 顾士甲, 张延, 等.一种荧光粉复合硅基介孔材料的发光玻璃及其制备方法, 中国发明专利. ZL201310088702.5. 2013.03.19. |
[42] | 王连军, 江莞, 陈立东, 等.块体功能玻璃的制备方法, 中国发明专利. ZL200810200173.2. 2008.09.19. |
[43] | PENG M, QIU J R, CHEN D P, et al.Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.Opt. Express, 2005, 13(18): 6892-6898. |
[44] | LI Y J, SONG Z G, LI C, et al.Effects of alkaline earth ions on the broadband near infrared emissions of Bi doped aluminophosphsilicate glasses.Mater. Chem. Phys., 2013, 139: 851-855. |
[45] | HUGHES M A, SUKZUKI T, OHISHI Y.Spectroscopy of bismuth-doped lead-aluminum-germanate glass and yttrium-aluminum- silicate glass.J. Non-cryst. Solids., 2010, 356: 2302-2309. |
[46] | XU K, LIU C, CHUNG W J, et al.Optical properties of CdSe quantum dots in silicate glasses.J. Non-cryst. Solids., 2010, 356(44-49): 2299-2301. |
[47] | GHAEMI B, ZHAO G, JIE G, et al.A study of formation and photoluminescence properties of ZnO quantum dot doped zinc-alumino-silicate glass ceramic.Opt. Mater., 2011, 33(6): 827-830. |
[48] | DONG G P, WU B T, ZHANG F T, et al.Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses.J. Alloys Compd., 2011, 509(38): 9335-9339. |
[49] | LEE Y K, LEE J S, HEO J, et al.Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications.Opt. Lett., 2012, 37(15): 3276-3278. |
[50] | CHEN L Y, CHANG J K, WU Y R, et al.Optical model for novel glass-based phosphor-converted white light-emitting diodes.J. Display Technol., 2013, 9(6): 441-446. |
[51] | ZHOU S, JIANG N, ZHU B, et al.Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers.Adv. Funct. Mater., 2008, 18(9): 1407-1413. |
[52] | NOGAMI M, KATO A.Oxidation of cadmium chalcogenide microcrystals doped in silica glasses prepared by the Sol-Gel process. J. Non-cryst. Solids., 1993, 163(3): 242-248. |
[53] | YU Y, CHEN D, HUANG P, et al.Structure and luminescence of Eu3+ doped glass ceramics embedding ZnO quantum dots.Ceram. Int., 2010, 36(3): 1091-1094. |
[54] | SELVAN S T, BULLEN C, ASHOKKUMAR M, et al.Synthesis of tunable, highly luminescent QD-glasses through Sol-Gel processing.Adv. Mater., 2001, 13(12/13): 985-988. |
[55] | HAMZAOUI HE, COURTHÉOUX L, NGUYEN VN, et al. From porous silica xerogels to bulk optical glases: the control of densification.Mater. Chem. Phys., 2010, 121(1/2): 83-88. |
[56] | KUCZYNSKI G.Study of the sintering of glass.J. Appl. Phys., 1949, 20: 1160-1163. |
[57] | RABINOVICH E.Preparation of glass by sintering.J. Mater. Sci., 1985, 20: 4259-4297. |
[58] | UCHUINO T, YAMADA T.White light emission from transparent SiO2 glass prepared from nanometer-sized.J. Appl. Phys., 2004, 85(7): 1164-1166. |
[59] | YAMADA T, NAKAJIMA M, SUEMOTO T, et al.Formation and photoluminescence characterization of transparent silica glass prepared by solid-phase reaction of nanometer-sized silica particles.J. Phys. Chem. C, 2007, 111(35): 12973-12979. |
[60] | SHEN Z J, LIU J, GRINS J, et al.Effective grain alignment in Bi4Ti3O12 ceramics by superplastic-deformation induced directional dynamic ripening.Adv. Mater., 2005, 17(6): 676-680. |
[61] | RIELLO P, BUCELLA S, ZAMENGO L, et al.Erbium-doped LAS glass ceramics prepared by spark plasma sintering (SPS).J. Eur. Ceram. Soc., 2006, 26(15): 3301-3306. |
[62] | MAYERHOFER T G, SHEN Z, LEONOVA E, et al.Consolidated silica glass from nanoparticles.J. Solid State Chem., 2008, 181(9): 2442-2447. |
[63] | ZHANG J, TU R, GOTO T.Fabrication of transparent SiO2 glass by pressureless sintering and spark plasma sintering.Ceram. Int., 2012, 38(4): 2673-2678. |
[64] | WANG L, WANG L J, JIANG W, et al.The investigation of order-disorder transition process of ZSM-5 induced by spark plasma sintering.J. Solid State Chem., 2014, 212: 128-133. |
[65] | GU S J, ZHANG X, WANG L J, et al.Direct indication of a higher central temperature achieved during spark plasma sintering process of a zeolite.J. Eur. Ceram. Soc., 2015, 35(5): 1599-1603. |
[66] | GONG Y, CHEN H R, HE Q J, et al.Preparation of Er3+/Yb3+ co-doped zeolite-derived silica glass and its upconversion luminescence property.Ceram. Int., 2013, 39(8): 8865-8868. |
[67] | GU S J, ZHOU B Y, LUO W, et al.Near-infrared broadband photoluminescence of bismuth-doped zeolite-derived silica glass prepared by SPS. J. Am. Ceram. Soc., 2016, 99(1): 121-127. |
[68] | ZHANG X, LUO W, WANG L, et al.Third-order nonlinear optical vitreous material derived from mesoporous silica incorporated with Au nanoparticles.J. Mater. Chem. C, 2014, 2(34): 6966-6970. |
[69] | ZHANG X, GU S J, ZHOU B Y, et al.Solid-state sintering of glasses with optical nonlinearity from mesoporous powders.J. Am. Ceram. Soc., 2016, DOI: 10.1111/jace.14172. |
[70] | 王连军, 顾士甲, 王明辉, 等.一种铋离子掺杂微孔分子筛制备近红外发光玻璃的方法, 中国发明专利, ZL201310190453.0. 2013.05.21. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||