[1] |
CHEN B, ZHAO N Q, GUO L, et al.Facile synthesis of 3D few-layered MoS2 coated TiO2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries.Nanoscale, 2015, 7: 12895-12905.
|
[2] |
BHIRUD A P, SATHAYE S D, WAICHAL R P, et al.In-situ preparation of N-TiO2/grapheme nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light.Nanoscale, 2015, 7: 5023-5034.
|
[3] |
HERNANDEZ-ALONSO M D, FRESNO F, SUAREZ S, et al. Development of alternative photocatalysts to TiO2: challenges and opportunities.Energy Environ. Sci., 2009, 2: 1231-1257.
|
[4] |
ZHOU H L, QU Y Q, ZEID T, et al.Towards highly efficient photocatalysts using semiconductor nanoarchitectures.Energy Environ Sci, 2012, 5(5): 6732-6743.
|
[5] |
WALTER M G, WARREN E L, MCKONE J R, et al.Solar water splitting cells.Chem. Rev. 2010, 110: 6446-6473.
|
[6] |
LIU M, SNAPP N, PARK H.Water photolysis with a cross-linked titanium dioxide nanowire anode.Chem. Sci., 2011, 2: 80-87.
|
[7] |
PESTUNOVA O P, ELIZAROVA G L, KERZHENTSEV M A, et al.Detoxication of water containing 1,1-dimethylhydrazine by catalytic oxidation with dioxygen and hydrogen peroxide over Cu- and Fe-containing catalysts. Catal. Today, 2002, 75: 219-225.
|
[8] |
MITCH W A, SHARP J O, TRUSSELL R R, et al.N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review.Environmental Engineering Science, 2003, 20(5): 389-404.
|
[9] |
ANGAJI M T, GHIAEE R.Cavitational decontamination of unsymmetrical dimethylhydrazine waste water.Journal of the Taiwan Institute of Chemical Engineers, 2015, 49: 142-147.
|
[10] |
朱永法. 纳米材料的表征与测试技术. 北京: 化学工业出版社, 2006: 190-191.
|
[11] |
ROBERT T D, LAUDE L D, GESKIN V M, et al.Micro-Raman spectroscopy study of surface transformations induced by excimer laser irradiation of TiO2.Thin Solid Films, 2003, 440(1): 268-277.
|
[12] |
MA H L, YANG J Y, DAI Y, et al.Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser.Applied Surface Science, 2007, 253: 7497-7500.
|
[13] |
BAI H W, LIU Z Y, SUN D D L. Hierarchical ZnO/Cu "corn-like" materials with high photodegradation and antibacterial capability under visible light.Physical Chemistry Chemical Physics, 2011, 13(13): 6205-6210.
|
[14] |
LI Y Z, HWANG D S, LEE N H, et al.Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst.Chemical Physics Letters, 2005, 404(1): 25-29.
|
[15] |
REN W J, AI Z H, JIA F L, et al.Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2.Applied Catalysis B Environmental, 2007, 69: 138-144.
|
[16] |
XIAO Q, OUYANG L L.Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature.Chemical Engineering Journal, 2009, 148(s 2/3): 248-253.
|
[17] |
XU P, XU T, LU J, et al.Visible-light-driven photocatalytic S- and C- codoped meso/nanoporous TiO2. Energy Environ. Sci. 2010, 3(8): 1128-1134.
|
[18] |
YUN H J, LEE H, JOO J B, et al.Facile preparation of high performance visible light sensitive photo-catalysts.Applied Catalysis B Environmental, 2010, 94(s 3/4): 241-247.
|
[19] |
WANG S A, XU J M, DING H L, et al.Facile synthesis of nitrogen self-doped rutile TiO2 nanorods.Crystengcomm, 2012, 14(22): 7672-7679.
|
[20] |
JI H Y, JING X C, XU Y G, et al.Magnetic g-C3N4/NiFe2O4 hybrids with enhanced photocatalytic activity.RSC Advances, 2015, 5(71): 57960-57967.
|
[21] |
CHEN Y L, TAO Q, FU W Y, et al.Enhanced photoelectric performance of PbS/CdS quantum dot co-sensitized solar cells via hydrogenated TiO2 nanorod arrays.Chemical Communications, 2014, 50(67): 9509-9512.
|
[22] |
XIAO F X, HUANG S F, TAO H B, et al.Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D-1D hybrid nanostructures.Nanoscale, 2014, 6(24): 14950-14961.
|
[23] |
CHENG X W, YU X J, XING Z P.Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity.Applied Surface Science, 2012, 258(7): 3244-3248.
|
[24] |
SHANG S Q, JIAO X L, CHEN D R.Template-free fabrication of TiO2 hollow spheres and their photocatalytic properties.ACS Applied Materials & Interfaces, 2011, 4(2): 860-865.
|
[25] |
Fu M, JIAO Q Z, ZHAO Y.Preparation of NiFe2O4 nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties.J. Mater. Chem. A, 2013, 1(18): 5577-5586.
|
[26] |
SATO S, NAKAMURA R, ABE S.Visible-light sensitization of TiO2 photocatalysts by wet-method N doping.Applied Catalysis A General, 2005, 284: 131-137.
|
[27] |
RHEE C H, LEE J S, CHUNG S H.Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route.Journal of Materials Research, 2005, 20(11): 3011-3020.
|
[28] |
HUANG L H, SUN C, LIU Y L.Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light.Applied Surface Science, 2007, 253(17): 7029-7035.
|
[29] |
GUO W, SHEN Y H, BOSCHLOO G, et al.Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells.Electrochimica Acta, 2011, 56(12): 4611-4617.
|
[30] |
LI G S, WU L, LI F, et al.Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation.Nanoscale, 2013, 5(5): 2118-2125.
|
[31] |
YANG Y C, LIU Y, WEI J H, et al.Electrospun nanofibers of p-type BiFeO3/n-type TiO2 heterojunctions with enhanced visiblelight photocatalytic activity. RSC Adv., 2014, 4: 31941-31947.
|
[32] |
BAKER D R, KAMAT P V.Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures.Advanced Functional Materials, 2009, 19(5): 805-811.
|
[33] |
SUBRAMANIAN V, WOLF E E, KAMAT P V.Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and Fermi-level equilibration.J. Phys. Chem. B, 2003, 107(30): 7479-7485.
|
[34] |
JAKOB M, LEVANON H, KAMAT P V.Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level.Nano Letters, 2003, 3(3): 353-358.
|
[35] |
WOOD A, GIERSIG M, MULVANEY P.Fermi level equilibration in quantum dot-metal nanojunctions. Journal of Physical Chemistry B, 2001, 105(37): 8810-8815.
|
[36] |
XIE Z, LIU X X, WANG W P, et al.Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles.Science & Technology of Advanced Materials, 2014, 15(5): 1-10.
|
[37] |
LI N, LIU G, ZHEN C, et al.Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/Graphene composites by template-free self-assembly.Advanced Functional Materials, 2011, 21(9): 1717-1722.
|
[38] |
PAN X, ZHAO Y, LIU S, et al.Comparing graphene-TiOnanowire and graphene-TiO2 nanoparticle composite photocatalysts.ACS Applied Materials&Interfaces, 2012, 4(8): 3944-3950.
|
[39] |
王永龄.功能陶瓷性能与应用. 北京: 科学出版社, 2003.
|