[1] |
SUN G H, LI K X, WANG J, et al.A novel approach for fabrication of hollow carbon spheres with large size and high specific surface area.Micropor. Mesopor. Mat., 2011, 139(1/2/3): 207-210.
|
[2] |
LIU B Y, JIA D C, SHAO Y F, et al.Effects of gas pressure and temperature on the synthesis of hollow carbon spheres in argon atmosphere.Mater. Chem. Phys., 2009, 114(1): 391-397.
|
[3] |
SANETUNTIKUL J, HANG T, SHANMUGAM S.Hollow nitrogen- doped carbon spheres as efficient and durable electrocatalysts for oxygen reduction.Chem. Commun., 2014, 50(67): 9473-9476.
|
[4] |
XU B, YUE S F, QIAO N, et al.Easy preparation of nitrogen-doped porous carbon nanospheres and their application in supercapacitors.Mater. Lett., 2014, 131: 49-52.
|
[5] |
JIANG J H, GAO Q M, ZHENG Z J, et al.Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres.Int. J. Hydrogen Energ., 2010, 35(1): 210-216.
|
[6] |
LI Y, YAO M, LI T T, et al.Simultaneous electrochemical determination of uric acid and dopamine in the presence of ascorbic acid using nitrogen-doped carbon hollow spheres.Anal. Methods, 2013, 5(15): 3635-3638.
|
[7] |
SU F B, ZHAO X S, WANG Y, et al.Hollow carbon spheres with a controllable shell structure.J. Mater. Chem., 2006, 16(45): 4413-4419.
|
[8] |
LIAO Y, GAO L, ZHANG X H, et al.Nitrogen-doped hollow carbon spheres with enhanced electrochemical capacitive properties.Mater. Res. Bull., 2012, 47(7): 1625-1629.
|
[9] |
ZHANG Z H, ZHANG R, LI C C, et al.Nitrogen-doped carbon hollow spheres for immobilization, direct electrochemistry and biosensing of protein.Electroanal., 2012, 24(6): 1424-1430.
|
[10] |
SU Y J, ZHANG Y F.Carbon nanomaterials synthesized by arc discharge hot plasma.Carbon, 2015, 83: 90-99.
|
[11] |
CHEN Y Z, DONG S J, LI S, et al.Preparation and growth of N-doped hollow carbon nanospheres and their application as catalyst support in direct borohydride fuel cell.J. Nanosci. Nanotechno., 2015, 15(5): 3862-3869.
|
[12] |
LI LING, LIN KUI, ZHANG FAN, et al.Preparation of N-doped long bamboo-like carbon nanotubes and their growth mechanism.Chinese Journal of Inorganic Chemistry, 2014, 30(5): 1097-1103.
|
[13] |
CUI S, SCHARFF P, SIEGMUND C, et al.Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N2 atmosphere.Carbon, 2004, 42(5/6): 931-939.
|
[14] |
郭素枝. 电子显微镜技术与应用. 福建: 厦门大学出版社, 2008: 56-57.
|
[15] |
GHOSH K, KUMAR M, MARUYAMA T, et al.Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources.Carbon, 2009, 47(6): 1565-1575.
|
[16] |
LEYVA-PORRAS C, ORNELAS-GUTIERREZ C, MIKI- YOSHIDA M, et al.EELS analysis of Nylon 6 nanofibers reinforced with nitroxide-functionalized graphene oxide.Carbon, 2014, 70: 164-172.
|
[17] |
WANG T H, CHU H Y, WANG I T.Structures, molecular orbitals and UV-vis spectra investigations on methyl 1-benzyl-1H-1, 2, 3-triazole-4-carboxylate: A computational study.Spectrochim. Acta. Part A, 2014, 131: 268-273.
|
[18] |
KARTERI I, KARATAS S, YAKUPHANOGLU F.Electrical characterization of graphene oxide and organic dielectriclayers based on thin film transistor.Appl. Surf. Sci., 2014, 318: 74-78.
|
[19] |
TANG L B, JI R B, LI X M, et al.Deep ultraviolet to near-infrared emission and photoresponse in layered N‑doped graphene quantum dots.ACS Nano, 2014, 8(6): 6312-6320.
|
[20] |
MA Q, SONG J P, JIN C, et al.A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid.Carbon, 2013, 54: 36-41.
|
[21] |
ZHENG X G, WANG H L, GONG Q, et al.Template-less synthesis of hollow carbon nanospheres for white light-emitting diodes.Mater. Lett., 2014, 126: 71-74.
|
[22] |
PARK J, GRAYFER E, JUNG Y, et al.Photoluminescent nanographitic/nitrogen-doped graphitic hollow shells as a potential candidate for biological applications.J. Mater. Chem. B, 2013, 1(9): 1229-1234.
|
[23] |
LI B, SONG X L, ZHANG P.Raman-assessed structural evolution of as-deposited few-layer graphene by He/H2 arc discharge during rapid-cooling thinning treatment.Carbon, 2014, 66, 426-435.
|
[24] |
LI B, NAN Y L, ZHANG P, et al.Synthesis and characterization of carbon nanostructures by evaporating pure graphite and carbon black in detonation-gas arc discharge.Diamond Relat. Mater., 2015, 55: 87-94.
|
[25] |
HUANG L P, WU B, CHEN J Y, et al.Gram-scale synthesis of graphene sheets by a catalytic arc-discharge method.Small, 2013, 9(8): 1330-1335.
|
[26] |
LI N, WANG Z Y, ZHAO K K, et al.Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method.Carbon, 2010, 48(1): 255-259.
|
[27] |
AWASTHI S, AWASTHI K, GHOSH A K, et al.Formation of single and multi-walled carbon nanotubes and graphene from Indian bituminous coal.Fuel, 2015, 147: 35-42.
|
[28] |
LIANG F, TANAKA M, CHOI S, et al.Measurement of anode surface temperature in carbon nanomaterial production by arc discharge method.Mater. Res. Bull., 2014, 60: 158-165.
|
[29] |
GAMALY E G, EBBESEN T W.Mechanism of carbon nanotube formation in the arc discharge.Phys. Rev. B, 1995, 52(3): 2083-2089.
|
[30] |
GUAN L, CUI L, LIN K, et al.Preparation of few-layer nitrogen-doped graphene nanosheets by DC arc discharge under nitrogen atmosphere of high temperature.Appl. Phys. A, 2011, 102(2): 289-294.
|
[31] |
KEIDAR M.Factors affecting synthesis of single wall carbon nanotubes in arc discharge.J. Phys. D: Appl. Phys., 2007, 40(8): 2388-2393.
|
[32] |
BORISOVA D, ANTONOV V, PROYKOVA A.Hydrogen sulfide adsorption on a defective graphene.Int. J. Quantum Chem., 2013, 113(6): 786-791.
|
[33] |
QIU H X, YANG G Z, ZHAO B, et al.Catalyst-free synthesis of multi-walled carbon nanotubes from carbon spheres and its implications for the formation mechanism.Carbon, 2013, 53: 137-144.
|
[34] |
XIONG Y J, XIE Y, LI Z Q, et al.A novel approach to carbon hollow spheres and vessels from CCl4 at low temperatures.Chem. Commun., 2003, 7: 904-905.
|
[35] |
GUAN LEI, CUI SHEN, CUI LAN, et al.Preparation of large diameter carbon tubes by DC arc discharge under nitrogen atmosphere of high temperature.Nanotechnology and Precision Engineering, 2009, 7(5): 403-407.
|