无机材料学报 ›› 2016, Vol. 31 ›› Issue (6): 667-672.DOI: 10.15541/jim20150607

• • 上一篇    

NiO微球的微波辅助合成及电荷传导能力优化

韩丹丹1, 景晓燕2, 徐鹏程1, 谭 奥1, 程振玉1   

  1. (1. 吉林化工学院 化学与制药工程学院, 吉林 132022; 2. 哈尔滨工程大学 材料科学与化学工程学院, 哈尔滨150001)
  • 收稿日期:2015-12-04 出版日期:2016-06-20 网络出版日期:2016-05-19

Optimizing the Charge Transfer Process by Synthesizing NiO Microspheres on Ni Foam through Microwave-assisted Method

HAN Dan-Dan1, JING Xiao-Yan2, XU Peng-Cheng1, TAN Ao1, CHENG Zhen-Yu1   

  1. (1. College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China; 2. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China)
  • Received:2015-12-04 Published:2016-06-20 Online:2016-05-19
  • Supported by:
    National Natural Science Foundation of China (21401073);Youth Foundation of Jilin Science and Technology (20140520097JH);Doctoral Foundation of Jilin Institute of Chemical Technology (2014161)

摘要:

为了优化电荷传导特性, 提高电极的电化学性能, 本工作采用微波辅助合成了分级多孔结构的氧化镍微球。通过XRD、SEM和TEM对产物的形貌进行了表征。研究结果表明, 开放多孔结构的氧化镍微球是由极薄纳米片自组装而成, 以硫酸镍为镍源, 得到的氧化镍微球的粒径约为2 µm。作为超级电容器电极材料, 在电流密度为0.5 A/g时, 电极的比容量达到455 F/g, 由于NiO微球独特的多孔特性, 使电极表现出良好的阻抗特性, 为法拉第反应过程提供了较多的活性反应点, 从而提高了电极的电容性能。

关键词: 微波辅助合成, 分级氧化镍, 多孔纳米片, 电化学性能

Abstract:

The porous nickel oxide microsphere on Ni foam was adopted to optimize the charge transfer process to improve electrochemical performance by a microwave-assisted method. Microstructure and morphologies of the resulting materials were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope. Results showed that the as-prepared NiO microspheres with nickel sulfate had average diameter of ~2 µm. The ultrathin secondary nanoflakes composed of nanowire building blocks were interconnected with each other forming a highly open net-structure. Because of enhanced electron transfer capability, charge transfer resistances of the porous microsphere were reduced and the electrochemical performances were improved, the charge-discharge measurements tested at a discharge current of 0.5 A/g showed higher rate specific capacitance (455 F/g). The impedance characterization illustrated lower electronic and ionic resistance of porous NiO due to its superior surface properties for enhanced electrode electrolyte contact during the faradaic redox reactions.

Key words: microwave-assisted synthesis, hierarchical nickel oxide, porous Nanoflake, electrochemical performance

中图分类号: