[1] |
LEE C, KIM C J.Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction.Physical Review Letters, 2011, 106(1): 14502.
|
[2] |
DAVIS A, YEONG Y H, STEELE A, et al.Superhydrophobic nanocomposite surface topography and ice adhesion.Applied Materials & Interfaces, 2014, 6(12): 9272-9279.
|
[3] |
FAN Y H, LI C Z, CHEN Z J, et al.Study on fabrication of the superhydrophobic Sol-Gel films based on copper wafer and its anti-corrosive properties.Applied Surface Science, 2012, 258(17): 6531-6536.
|
[4] |
SHIRTCLIFFE N J, MCHALE G, NEWTON M I, et al.Superhydrophobic copper tubes with possible flow enhancement and drag reduction.Applied Materials & Interfaces, 2009, 1(6): 1316-1323.
|
[5] |
SHAFIEI M, ALPAS A T.Nanocrystalline nickel films with lotus leaf texture for superhydrophobic and low friction surfaces.Applied Surface Science, 2009, 256(3): 710-719.
|
[6] |
BARTHLOTT W, NEINHUIS C.Purity of the sacred lotus, or escape from contamination in biological surfaces.Planta, 1997, 202(1): 1-8.
|
[7] |
ANTONINI C, INNOCENTI M, HORN T, et al.Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems.Cold Regions Science and Technology, 2011, 67(1/2): 58-67.
|
[8] |
LEE S M, KIM K S, PIPPEL E, et al.Facile route toward mechanically stable superhydrophobic copper using oxidation- reduction induced morphology changes.Journal of Physical Chemistry, 2012, 116(4): 2781-2790.
|
[9] |
WAN YONG, WANG ZHONG-QIAN, LIU YI-FANG.Fabrication and tribological performance of superhydrophobic film on zinc substrate.Journal of Inorganic Materials, 2012, 27(4): 390-394.
|
[10] |
QIAN B T, SHEN Z Q.Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates.Langmuir, 2005, 21(20): 9007-9009.
|
[11] |
PARK B G, LEE W B, KIM J S, et al.Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 370(1/2/3): 15-19.
|
[12] |
ZHU X T, ZHANG Z Z, XU X H, et al.Facile fabrication of a superamphiphobic surface on the copper substrate.Journal of Colloid and Interface Science, 2012, 367(1): 443-449.
|
[13] |
LI L, HUANG T, LEI J, et al.Robust biomimetic-structural superhydrophobic surface on aluminum alloy.Applied Materials & Interfaces, 2015, 7(3): 1449-1457.
|
[14] |
RAWAL S.Metal-matrix composites for space applications.JOM, 2001, 53(4): 14-17.
|
[15] |
CUI Y, WANG L F, REN J Y.Multi-functional SiC/Al composites for aerospace applications,Chinese Journal of Aeronautics, 2008, 21(6): 578-584.
|
[16] |
HENDERSON B.Defects in crystalline solid.London: Edward Arnold Ltd, 1972.
|
[17] |
HULL D, BACON D J.Introduction to dislocations. Oxford: Butter-worth-Heinemann, 2001.
|
[18] |
LIU J A, XIE S S. Application and development of aluminium alloys. Metallurgical Industry Press, 2004.
|
[19] |
XU J W, YUN N Z, WANG J Y, et al. Electrochemical machining technique. National Defense Industry Press, 2008.
|
[20] |
FENG A, LIN C, LIN J, et al.Pitting behavior of SiCp/2024 Al metal matrix composites.Journal of Materials Science, 1998, 33: 5637-5642.
|
[21] |
CASSIE A B D, BAXTER S. Wettability of porous surfaces. Translations of the Faraday Society, 1944, 40: 546-551.
|
[22] |
PATANKAR N A.On the modeling of hydrophobic contact angles on rough surfaces,Langmuir, 2003, 19(4): 1249-1253.
|
[23] |
ONDA T, SHIBUICHI S, SATOH N, et al.Super-water- repellent fractal surfaces. Langmuir, 1996, 12(9): 2125-2127.
|
[24] |
CHEN W, FADEEV A Y, HSIEH M C, et al.Ultrahydrophobic and ultralyophobic surfaces: some comments and examples.Langmuir, 1999, 15: 3395-3399.
|