无机材料学报 ›› 2015, Vol. 30 ›› Issue (11): 1148-1154.DOI: 10.15541/jim20150180
安建国1, 高 翔1, 金军江1, 顾金楼1, 李 亮1, 李永生1, 施剑林1, 2
收稿日期:
2015-04-13
修回日期:
2015-05-27
出版日期:
2015-11-20
网络出版日期:
2015-10-20
作者简介:
安建国(1989–), 男, 硕士研究生. E-mail: Caesar_An@163.com
AN Jian-Guo1, GAO Xiang1, JIN Jun-Jiang1, GU Jin-Lou1, LI Liang1, LI Yong-Sheng1, SHI Jian-Lin1, 2
Received:
2015-04-13
Revised:
2015-05-27
Published:
2015-11-20
Online:
2015-10-20
About author:
AN Jian-Guo. E-mail: Caesar_An@163.com
摘要:
以聚乙二醇为介孔导向剂, 通过凝胶转化制备了介孔ZSM-5沸石。研究表明, 在TPA+/SiO2=0.1时经过9~15 h溶剂挥发制得的凝胶, 在160℃处理24 h可得到介孔ZSM-5沸石; 挥发时间太短或太长会得到纯的ZSM-5沸石或介孔材料, 说明在凝胶的制备过程中, 通过控制溶剂的挥发程度, 既可为沸石生长过程提供所需的水分, 又能避免沸石晶体形成过程中无定型相的产生, 从而在较低的TPA+浓度下获得介孔ZSM-5沸石。与传统的ZSM-5沸石相比, 利用该方法制备的介孔ZSM-5沸石不仅具有微孔/介孔多级孔结构, 同时具有沸石材料较强的酸性、较高的水热稳定性和择形催化性能, 使其在苯甲醛与正丁醇的大分子醇醛缩聚反应中能有效地克服传统沸石孔径限制的缺点, 收率高达42.4%。
中图分类号:
安建国, 高 翔, 金军江, 顾金楼, 李 亮, 李永生, 施剑林. 以聚乙二醇为模板凝胶转化制备介孔ZSM-5沸石及其催化性能[J]. 无机材料学报, 2015, 30(11): 1148-1154.
AN Jian-Guo, GAO Xiang, JIN Jun-Jiang, GU Jin-Lou, LI Liang, LI Yong-Sheng, SHI Jian-Lin. Mesoporous Zeolite ZSM-5 Synthesized via Gel Conversion with Polyethyleneglycol as Template and Its Catalytic Performance[J]. Journal of Inorganic Materials, 2015, 30(11): 1148-1154.
图2 MZ-X系列样品的氮气吸附脱附等温线(a)和MZ-9样品和传统ZSM-5的氮气吸附脱附等温线以及MZ-9脱附曲线对应的BJH孔径分布图(b)
Fig. 2 (a) N2 adsorption-desorption isotherms of MZ-X samples and (b) N2 adsorption-desorption isotherms of conventional ZSM-5 and MZ-9 with the pore-size distribution curve of MZ-9 (inset)
Sample | Gel weight loss /% | SBET /(m2·g-1) | Sexternal /(m2·g-1) | Vtotal /(cm3·g-1) | Vmicro /(cm3·g-1) | Vexternal /(cm3·g-1) | Pore size /nm |
---|---|---|---|---|---|---|---|
MZ-0 | 95 | 385 | 85 | 0.18 | 0.12 | 0.06 | - |
MZ-9 | 87 | 441 | 172 | 0.30 | 0.11 | 0.19 | 10-50 |
MZ-15 | 82 | 469 | 365 | 0.60 | 0.06 | 0.54 | 10-40 |
MZ-21 | 64 | 603 | 603 | 1.36 | 0 | 1.36 | 5-15 |
Conventional ZSM-5 | - | 395 | 98 | 0.18 | 0.11 | 0.07 | - |
表1 不同样品的孔结构参数[a]
Table 1 Textural properties of the samples
Sample | Gel weight loss /% | SBET /(m2·g-1) | Sexternal /(m2·g-1) | Vtotal /(cm3·g-1) | Vmicro /(cm3·g-1) | Vexternal /(cm3·g-1) | Pore size /nm |
---|---|---|---|---|---|---|---|
MZ-0 | 95 | 385 | 85 | 0.18 | 0.12 | 0.06 | - |
MZ-9 | 87 | 441 | 172 | 0.30 | 0.11 | 0.19 | 10-50 |
MZ-15 | 82 | 469 | 365 | 0.60 | 0.06 | 0.54 | 10-40 |
MZ-21 | 64 | 603 | 603 | 1.36 | 0 | 1.36 | 5-15 |
Conventional ZSM-5 | - | 395 | 98 | 0.18 | 0.11 | 0.07 | - |
图4 MZ-9样品在不同倍率下的透射电镜照片(a, b)和(b)图中白色矩形区域的高分辨透射电镜照片(c)以及(c)图对应的选区电子衍射结果(d)
Fig. 4 TEM images of MZ-9 at different magnifications (a, b) and HR-TEM images from the area marked by a white square in b (c), as well as selected area electron diffraction (SAED) corresponded to c (d)
图9 苯甲醛与正丁醇的醇醛缩合反应(a)和间苯二酚与乙酰乙酸乙酯的佩希曼缩合反应(b)
Fig. 9 Aldol condensation of benzaldehyde and n-butyl alcohol (a) and Pechmann reaction of resorcinol with ethyl acetoacetate (b)
Reactions | MZ-9 (Si/Al=25) | Con ZSM-5 (Si/Al=25) |
---|---|---|
Benzaldehyde + n-butyl alcohol | 43.3 | 19.1 |
Resorcinol+ethylacetoacetate | 40.0 | 17.5 |
表2 MZ-9和传统ZSM-5沸石催化性能对比
Table 2 Catalytic properties of MZ-9 and conventional ZSM-5[a]
Reactions | MZ-9 (Si/Al=25) | Con ZSM-5 (Si/Al=25) |
---|---|---|
Benzaldehyde + n-butyl alcohol | 43.3 | 19.1 |
Resorcinol+ethylacetoacetate | 40.0 | 17.5 |
[1] | DAVIS M E.Ordered porous materials for emerging applications.Nature, 2002, 417(6891): 813-821. |
[2] | CORMA A.State of the art and future challenges of zeolites as catalysts.Journal of Catalysis, 2003, 216(1): 298-312. |
[3] | TAO Y, KANOH H, ABRAMS L, et al.Mesopore modified zeolites: preparation, characterrization, and applications. Chemical Reviews, 2006, 106(3): 896-910. |
[4] | PEREZ-RAMIREZ J, CHRISTENSEN C H, EGEBLAD K, et al.Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design.Chemical Society Reviews, 2008, 37(11): 2530-2542. |
[5] | LE HUA Z, ZHOU J, SHI J L.Recent advances in hierarchically structured zeolites: synthesis and material performances.Chemical Communications, 2011, 47(38): 10536-10547. |
[6] | CHEN L H, LI X Y, ROOKE J C, et al.Hierarchically structured zeolites: synthesis, mass transport properties and applications.Journal of Materials Chemistry, 2012, 22(34): 17381-17403. |
[7] | MOLLER K, BEIN T.Mesoporosity a new dimension for zeolites.Chemical Society Reviews, 2013, 42(9): 3689-3707. |
[8] | SERRANO D P, ESCOLA J M, PIZARRO P.Synthesis strategies in the search for hierarchical zeolites.Chem. Soc. Rev., 2013, 42: 4004-4035. |
[9] | HOFFMANN N.Photochemical reactions as key steps in organic synthesis.Chemical Reviews, 2008, 108(3): 1052-1103. |
[10] | SOLER I G, SANCHEZ C, LEBEAU B, et al.Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures.Chemical Reviews, 2002, 102(11): 4093-4138. |
[11] | JANSSEN A H, KOSTER A J, DE Jong K P. Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y.Angewandte Chemie International Edition, 2001, 40(6): 1102-1104. |
[12] | VAN D S, JANSSEN A H, BITTER J H, et al.Generation, characterization, and impact of mesopores in zeolite catalysts.Catalysis Reviews, 2003, 45(2): 297-319. |
[13] | PEREZ R J, ABELLO S, VILLAESCUSA L A, et al.Toward functional clathrasils: size and composition controlled octadecasil nanocrystals by desilication.Angewandte Chemie International Edition, 2008, 47(41): 7913-7917. |
[14] | CHEN L H, LI X Y, TIAN G, et al.Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three level micro-meso-macroporous structure.Angewandte Chemie International Edition, 2011, 50(47): 11156-11161. |
[15] | DING J, LIU H, YUAN P, et al.Catalytic properties of a hierarchical zeolite synthesized from a natural aluminosilicate mineral without the use of a secondary mesoscale template.Chem CatChem, 2013, 5(8): 2258-2269. |
[16] | JACOBSEN C J H, MADSEN C, HOUZVICKA J, et al. Mesoporous zeolite single crystals.Journal of the American Chemical Society, 2000, 122(29): 7116-7117. |
[17] | SCHMIDT I, BOISEN A, GUSTAVSSON E, et al.Carbon nanotube templated growth of mesoporous zeolite single crystals.Chemistry of Materials, 2001, 13(12): 4416-4418. |
[18] | TAO Y, KANOH H, KANEKO K.ZSM-5 monolith of uniform mesoporous channels.Journal of the American Chemical Society, 2003, 125(20): 6044-6045. |
[19] | KUSTOVA M, EGEBLAD K, ZHU K, et al.Versatile route to zeolite single crystals with controlled mesoporosity: in situ sugar decomposition for templating of hierarchical zeolites. Chemistry of Materials, 2007, 19(12): 2915-2917. |
[20] | FAN W, SNYDER M A, KUMAR S, et al.Hierarchical nanofabrication of microporous crystals with ordered mesoporosity.Nature Materials, 2008, 7(12): 984-991. |
[21] | CHOI M, CHO H S, SRIVASTAVA R, et al.Amphiphilic organosilane directed synthesis of crystalline zeolite with tunable mesoporosity.Nature Materials, 2006, 5(9): 718-723. |
[22] | WANG H, PINNAVAIA T J.MFI zeolite with small and uniform intracrystal mesopores.Angewandte Chemie International Edition, 2006, 45(45): 7603-7606. |
[23] | KIRSCHHOCK C E A, KREMER S P B, VERMANT J, et al. Design and synthesis of hierarchical materials from ordered zeolitic building units.Chemistry-a European Journal, 2005, 11(15): 4306-4313. |
[24] | BERMEJO D R, GOUNDER R, DAVIS M E.Framework and extraframework tin sites in zeolite beta react glucose differently.ACS Catalysis, 2012, 2(12): 2705-2713. |
[25] | WANG L, ZHANG Z, YIN C, et al.Hierarchical mesoporous zeolites with controllable mesoporosity templated from cationic polymers.Microporous and Mesoporous Materials, 2010, 131(1): 58-67. |
[26] | ZHU Y, HUA Z, ZHOU J, et al.Hierarchical mesoporous zeolites: direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation.Chemistry-A European Journal, 2011, 17(51): 14618-14627. |
[27] | NA K, JO C, KIM J, et al.Directing zeolite structures into hierarchically nanoporous architectures.Science, 2011, 333(6040): 328-332. |
[28] | LIU F, WILLHAMMAR T, WANG L, et al.ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules.Journal of the American Chemical Society, 2012, 134(10): 4557-4560. |
[29] | MENG X, NAWAZ F, XIAO F S.Templating route for synthesizing mesoporous zeolites with improved catalytic properties.Nano Today, 2009, 4(4): 292-301. |
[30] | HOLM M S, TAARNING E, EGEBLAD K, et al.Catalysis with hierarchical zeolites.Catalysis Today, 2011, 168(1): 3-16. |
[31] | LIU Y, ZHANG W, LIU Z, et al.Direct observation of the mesopores in ZSM-5 zeolites with hierarchical porous structures by laser hyperpolarized 129Xe NMR.The Journal of Physical Chemistry C, 2008, 112(39): 15375-15381. |
[32] | ZHU H, LIU Z, KONG D, et al.Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method.Journal of Colloid and Interface Science, 2009, 331(2): 432-438. |
[33] | TAO H, LI C, REN J, et al.Synthesis of mesoporous zeolite single crystals with cheap porogens.Journal of Solid State Chemistry, 2011, 184(7): 1820-1827. |
[34] | ZHOU J, HUA Z, LIU Z, et al.Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties.ACS Catalysis, 2011, 1(4): 287-291. |
[35] | NAKANISHI K.Pore structure control of silica gels based on phase separation.Journal of Porous Materials, 1997, 4(2): 67-112. |
[36] | TAKAHASHI R, NAKANISHI K, SOGA N.Aggregation behavior of alkoxide-derived silica in Sol-Gel process in presence of poly (ethylene oxide).Journal of Sol-Gel Science and Technology, 2000, 17(1): 7-18. |
[37] | TAKAHASHI R, SATO S, SODESAWA T, et al.Silica alumina catalyst with bimodal pore structure prepared by phase separation in Sol-Gel process.Journal of Catalysis, 2001, 200(1): 197-202. |
[38] | SUN Q, BEELEN T P M, VAN Santen R A, et al. PEG-mediated silica pore formation monitored in situ by USAXS and SAXS: systems with properties resembling diatomaceous silica.The Journal of Physical Chemistry B, 2002, 106(44): 11539-11548. |
[39] | CHEN G, JIANG L, WANG L, et al.Synthesis of mesoporous ZSM-5 by one-pot method in the presence of polyethylene glycol.Microporous and Mesoporous Materials, 2010, 134(1): 189-194. |
[40] | TAO H, YANG H, LIU X, et al.Highly stable hierarchical ZSM-5 zeolite with intra and inter crystalline porous structures.Chemical Engineering Journal, 2013, 225: 686-694. |
[41] | NAIK S P, CHIANG A S T, THOMPSON R W. Synthesis of zeolitic mesoporous materials by dry gel conversion under controlled humidity.The Journal of Physical Chemistry B, 2003, 107(29): 7006-7014. |
[42] | DENG X, WANG Y, SHEN L, et al.Low-cost synthesis of titanium silicalite-1 (TS-1) with highly catalytic oxidation performance through a controlled hydrolysis process.Industrial & Engineering Chemistry Research, 2013, 52(3): 1190-1196. |
[43] | ZHOU J, HUA Z, ZHAO J, et al.A micro/mesoporous aluminosilicate: key factors affecting framework crystallization during steam assisted synthesis and its catalytic property.Journal of Materials Chemistry, 2010, 20(32): 6764-6771. |
[44] | GRANDI S, MAGISTRIS A, MUSTARELLI P, et al. Synthesis and characterization of SiO2-PEG hybrid materials. Journal of Non-crystalline Solids, 2006, 352(3): 273-280. |
[45] | ZHOU J, LIU Z C, LI L Y, et al.Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in oxylene isomerization.Chinese Journal of Catalysis, 2013, 34(7): 1429-1433. |
[46] | SHETTI V N, KIM J, SRIVASTAVA R, et al.Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/ microporous hierarchical structures.Journal of Catalysis, 2008, 254(2): 296-303. |
[47] | HORNING E C, DENEKS M O, FIELD R E.3, 5-Dimethyl- 4-Carbethoxy-2-Cyclohexen-1-One and 3, 5-Dimethyl-2-Cyclohexen- 1-One. Organic Syntheses, 1955: 24. |
[1] | 史忠祥, 王晶, 关昕. Er3+掺杂调控NaY(WO4)2: Dy3+的上转换发光性能[J]. 无机材料学报, 2018, 33(5): 521-527. |
[2] | 徐荣, 姜万, 戚律, 张琪, 钟璟. PEG交联有机硅/陶瓷杂化膜的制备及反渗透脱盐性能[J]. 无机材料学报, 2018, 33(11): 1154-1160. |
[3] | 路淑娟, 王 唱, 赵博文, 汪 浩, 刘晶冰, 严 辉. PEG改性氧化钨薄膜的电致变色特性[J]. 无机材料学报, 2017, 32(2): 185-190. |
[4] | 马平平, 刘志坚, 夏建华, 卢志超. 聚乙二醇为碳源合成0.7LiFePO4ּ0.3Li3V2(PO4)3/C 复合正极材料及性能研究[J]. 无机材料学报, 2015, 30(2): 122-128. |
[5] | 王俊芬, 刘旭光, 张萍萍, 张宝泉. 水蒸汽辅助凝胶转化法合成连续致密的TAPO-5分子筛膜[J]. 无机材料学报, 2013, 28(06): 589-593. |
[6] | 卢剑萍, 李国荣, 郑嘹赢, 曾江涛, 曾华荣, 卞建江. 电泳沉积法制备PNN-PZT厚膜的研究[J]. 无机材料学报, 2012, 27(4): 379-384. |
[7] | 朱振峰, 王小枫, 刘 辉, 刘佃光. 准单分散SnO2微球的微波溶剂热合成[J]. 无机材料学报, 2012, 27(3): 311-316. |
[8] | 付 芳, 杨卫华, 王鸿辉. 聚乙二醇改性钛基PbO2电极的制备及性质研究[J]. 无机材料学报, 2010, 25(6): 653-658. |
[9] | 田 昂,王 超,薛向欣,吴安华,管格非,王 丽,仇 波. 纳米羟基磷灰石对人脑胶质母细胞瘤U87细胞活性抑制效应的研[J]. 无机材料学报, 2010, 25(1): 101-106. |
[10] | 张晏清,张 雄. 空心微珠铁氧体复合粉体的改性与吸波性能[J]. 无机材料学报, 2009, 24(4): 732-736. |
[11] | 孙宜华,熊惟皓,李晨辉. ZnO-Al2O3混合粉体水基悬浮液性能的研究[J]. 无机材料学报, 2009, 24(2): 413-416. |
[12] | 刘付胜聪,肖汉宁,李玉平,胡智荣. 纳米TiO2表面吸附聚乙二醇及其分散稳定性的研究[J]. 无机材料学报, 2005, 20(2): 310-316. |
[13] | 王娟,张长瑞,冯坚. 聚乙二醇对纳米多孔二氧化硅薄膜性能的影响[J]. 无机材料学报, 2005, 20(2): 435-441. |
[14] | 李延报,翁文剑,程逵,杜丕一,沈鸽,韩高荣. 聚乙二醇对合成无定形磷酸钙的影响[J]. 无机材料学报, 2004, 19(1): 234-238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||