无机材料学报 ›› 2015, Vol. 30 ›› Issue (11): 1131-1138.DOI: 10.15541/jim20150214
杨 英, 高 菁, 崔嘉瑞, 郭学益
收稿日期:
2015-05-06
修回日期:
2015-07-06
出版日期:
2015-11-20
网络出版日期:
2015-10-20
作者简介:
杨 英(1980–), 女, 副教授. E-mail: muyicaoyang@csu.edu.cn
基金资助:
YANG Ying, GAO Jing, CUI Jia-Rui, GUO Xue-Yi
Received:
2015-05-06
Revised:
2015-07-06
Published:
2015-11-20
Online:
2015-10-20
About author:
YANG Ying. E-mail: muyicaoyang@csu.edu.cn
Supported by:
摘要:
钙钛矿太阳能电池由纳米晶致密层、钙钛矿型光活性层CH3NH3PbX3 (X= Cl、Br、I)、空穴传输层及对电极组成。其中光活性层吸光材料的种类及其成膜技术、空穴传输层材料类型及结构设计是影响钙钛矿太阳能电池光电性能的重要因素。本文结合钙钛矿太阳能电池近年来的最新研究进展, 对影响器件光电性能的关键因素: 光吸收层、空穴传输层、工艺参数以及结构设计等进行综述, 同时展望了钙钛矿太阳能电池未来的发展趋势。
中图分类号:
杨 英, 高 菁, 崔嘉瑞, 郭学益. 钙钛矿太阳能电池的研究进展[J]. 无机材料学报, 2015, 30(11): 1131-1138.
YANG Ying, GAO Jing, CUI Jia-Rui, GUO Xue-Yi. Research Progress of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2015, 30(11): 1131-1138.
图1 钙钛矿太阳能电池的结构(a)和典型ABX3型立方晶体结构(b)[7]
Fig. 1 Schematic diagram of current generation mechanism of perovskite solar cells (a) and cubic perovskite crystal structure (b)[7]
Perovskite light absorber | Compact nanocrystalline layer | Hole transport layer | Counter electrode | η/% | Reference |
---|---|---|---|---|---|
CH3NH3PbI3 | TiO2 | P3HT | Au | 4.24 | [20] |
CH3NH3PbI3 | TiO2 | D-π-A conjugated copolymer P | Au | 6.64 | [20] |
CH3NH3PbI3 | TiO2 | - | Pt | 6.54 | [21] |
CH3NH3PbI3 | TiO2 | PFF | Au | 9.40 | [23] |
CH3NH3PbI3 | TiO2 | spiro-OMeTAD | Au | 15.0 | [3] |
CH3NH3PbI2Cl | TiO2+Al2O3 | spiro-OMeTAD | Ag | 12.3 | [26] |
CH3NH3PbI3-xClx | TiO2 | P3HT | Au | 9.2 | [25] |
CH3NH3PbI3-xClx | TiO2 | spiro-OMeTAD | Au | 19.3 | [5] |
CH3NH3Pb(I1-xBrx)3 | TiO2 | PTAA | Au | 12.3 | [30] |
(CH3NH3)0.6(HC(NH2)2)0.4 Pb3 | TiO2 | spiro-OMeTAD | Au | 14.9 | [21] |
表1 不同光活性材料钙钛矿太阳能电池的光电转换效率
Table 1 Photoelectric conversion efficiency of perovskite solar cells with different light absorber materials
Perovskite light absorber | Compact nanocrystalline layer | Hole transport layer | Counter electrode | η/% | Reference |
---|---|---|---|---|---|
CH3NH3PbI3 | TiO2 | P3HT | Au | 4.24 | [20] |
CH3NH3PbI3 | TiO2 | D-π-A conjugated copolymer P | Au | 6.64 | [20] |
CH3NH3PbI3 | TiO2 | - | Pt | 6.54 | [21] |
CH3NH3PbI3 | TiO2 | PFF | Au | 9.40 | [23] |
CH3NH3PbI3 | TiO2 | spiro-OMeTAD | Au | 15.0 | [3] |
CH3NH3PbI2Cl | TiO2+Al2O3 | spiro-OMeTAD | Ag | 12.3 | [26] |
CH3NH3PbI3-xClx | TiO2 | P3HT | Au | 9.2 | [25] |
CH3NH3PbI3-xClx | TiO2 | spiro-OMeTAD | Au | 19.3 | [5] |
CH3NH3Pb(I1-xBrx)3 | TiO2 | PTAA | Au | 12.3 | [30] |
(CH3NH3)0.6(HC(NH2)2)0.4 Pb3 | TiO2 | spiro-OMeTAD | Au | 14.9 | [21] |
Deposition methods | Perovskite photoactive absorber | Processing parameters | η/% | Reference |
---|---|---|---|---|
One-step | CH3NH3PbI3 | CH3NH3PbI3 film: spin at 3000 r/min for 20 s, dried at 40℃ for 3 min and 100℃ for 5 min | 7.5 | [33] |
One-step | CH3NH3PbI2 | CH3NH3PbI3 film: spin at 2000 r/min for 60 s dried at 105℃ for 45 min | 7.2 | [38] |
One-step | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3:1, spin at 2000 r/min for 30 s dried at 90℃ for 60 min and 100℃ for 25 min | 19.3 | [5] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 2000 r/min for 30 s dried at 110℃ for 15 min CH3NH3I powder is spread on PbI2 film, dried at 150℃ | 12.1 | [34] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 3000 r/min for 20 s dried at 40℃ for 3 min and 100℃ for 5 min CH3NH3I film: spin at 4000 r/min for 20 s dried at 105℃ for 5 min | 13.9 | [33] |
Dual-source vapor deposition | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3.5:1 CH3NH3I film : dried at 120℃ for 5 min PbCl2 film : dried at 325℃ for 5 min | 15 | [35] |
表2 不同方法制备的钙钛矿光活性层相关参数及相应钙钛矿太阳能电池的光电转换效率
Table 2 Processing parameters for preparing perovskite photoactive absorber thin film and corresponding photoelectric conversion efficiency
Deposition methods | Perovskite photoactive absorber | Processing parameters | η/% | Reference |
---|---|---|---|---|
One-step | CH3NH3PbI3 | CH3NH3PbI3 film: spin at 3000 r/min for 20 s, dried at 40℃ for 3 min and 100℃ for 5 min | 7.5 | [33] |
One-step | CH3NH3PbI2 | CH3NH3PbI3 film: spin at 2000 r/min for 60 s dried at 105℃ for 45 min | 7.2 | [38] |
One-step | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3:1, spin at 2000 r/min for 30 s dried at 90℃ for 60 min and 100℃ for 25 min | 19.3 | [5] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 2000 r/min for 30 s dried at 110℃ for 15 min CH3NH3I powder is spread on PbI2 film, dried at 150℃ | 12.1 | [34] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 3000 r/min for 20 s dried at 40℃ for 3 min and 100℃ for 5 min CH3NH3I film: spin at 4000 r/min for 20 s dried at 105℃ for 5 min | 13.9 | [33] |
Dual-source vapor deposition | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3.5:1 CH3NH3I film : dried at 120℃ for 5 min PbCl2 film : dried at 325℃ for 5 min | 15 | [35] |
Structure of the perovskite solar cell | Hole transport layer | J/(mA·cm-2) | Voc /V | η/% | Reference |
---|---|---|---|---|---|
TCO/TiO2/CH3NH3PbI3-xClx/metal | none | 22.20 | 1.030 | 17.90 | [48] |
FTO/TiO2/CH3NH3PbI3/Au | none | 7.38 | 0.699 | 3.30 | [27] |
FTO/TiO2/CH3NH3PbI3/Al2O3/Au | none | 10.67 | 0.789 | 5.07 | [27] |
FTO/TiO2/ CH3NH3PbI3/Au | none | 17.80 | 0.905 | 10.49 | [53] |
ITO/TiO2/ CH3NH3PbI2Cl/Au | P3HT | 21.30 | 0.900 | 10.80 | [14] |
FTO/TiO2/ CH3NH3PbI3/Au | Spiro-OMeTAD | 16.70 | 0.855 | 8.40 | [44] |
FTO/TiO2/ CH3NH3PbI3/Au | PTAA | 16.50 | 0.997 | 12.00 | [44] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 12±3 | 0.84±0.03 | 8.60 | [24] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | P3HT | 12±2 | 0.93±0.06 | 9.30 | [32] |
FTO/TiO2/CH3NH3PbI3/Au | CuI | 17.80 | 0.550 | 6.00 | [45] |
FTO/TiO2/CH3NH3PbI3/Au | CuSCN | 19.70 | 1.016 | 12.40 | [46] |
FTO/ CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 21.97 | 1.060 | 14.14 | [47] |
表3 空穴传输材料对钙钛矿太阳能电池的结构及光电性能的影响
Table 3 Effect of hole transport materials on perovskite solar cells
Structure of the perovskite solar cell | Hole transport layer | J/(mA·cm-2) | Voc /V | η/% | Reference |
---|---|---|---|---|---|
TCO/TiO2/CH3NH3PbI3-xClx/metal | none | 22.20 | 1.030 | 17.90 | [48] |
FTO/TiO2/CH3NH3PbI3/Au | none | 7.38 | 0.699 | 3.30 | [27] |
FTO/TiO2/CH3NH3PbI3/Al2O3/Au | none | 10.67 | 0.789 | 5.07 | [27] |
FTO/TiO2/ CH3NH3PbI3/Au | none | 17.80 | 0.905 | 10.49 | [53] |
ITO/TiO2/ CH3NH3PbI2Cl/Au | P3HT | 21.30 | 0.900 | 10.80 | [14] |
FTO/TiO2/ CH3NH3PbI3/Au | Spiro-OMeTAD | 16.70 | 0.855 | 8.40 | [44] |
FTO/TiO2/ CH3NH3PbI3/Au | PTAA | 16.50 | 0.997 | 12.00 | [44] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 12±3 | 0.84±0.03 | 8.60 | [24] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | P3HT | 12±2 | 0.93±0.06 | 9.30 | [32] |
FTO/TiO2/CH3NH3PbI3/Au | CuI | 17.80 | 0.550 | 6.00 | [45] |
FTO/TiO2/CH3NH3PbI3/Au | CuSCN | 19.70 | 1.016 | 12.40 | [46] |
FTO/ CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 21.97 | 1.060 | 14.14 | [47] |
[1] | KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society., 2009, 131(17): 6050-6051. |
[2] | LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science., 2012, 338(6107): 643-647. |
[3] | BURSCHKA J, PELLET N, MOON S, et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells.Nature., 2013, 499(7458): 316-319. |
[4] | COUZIN-FRANKEL J.Breakthrough of the year 2013. cancer immunotherapy.Science, 2013, 342(6165): 1432-1433. |
[5] | ZHOU H, CHEN Q, LI G, et al.Interface engineering of highly efficient perovskite solar cells.Science, 2014, 345(6196): 542-546. |
[6] | YANG W S, NOH J H, JEON N J, et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.Science, 2015, 348(6240): 1234-1237. |
[7] | GREEN M A, HO-BAILLIE A, SNAITH H J.The emergence of perovskite solar cells.Nature Photonics, 2014, 8(7): 506-514. |
[8] | 郑莹莹. 有机/无机杂化钙钛矿结构光电功能材料的研究. 浙江大学博士学位论文, 2007. |
[9] | OUYANG M, BAI R, CHEN L, et al.Highly photoconductive copper phthalocyanine-coated titania nanoarrays via secondary deposition.The Journal of Physical Chemistry C, 2008, 112(30): 11250-11256. |
[10] | STRANKS S D, EPERON G E, GRANCINI G, et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science, 2013, 342(6156): 341-344. |
[11] | YANG Y, WANG W.Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3.Journal of Power Sources, 2015, 293: 577-584. |
[12] | ETGAR L, GAO P, QIN P, et al.A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response.Journal of Materials Chemistry A, 2014, 2(30): 11586-11590. |
[13] | HU L, WANG W, LIU H, et al.PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells.Journal of Materials Chemistry A, 2015, 3(2): 515-518. |
[14] | CONINGS B, BAETEN L, DE DOBBELAERE C, et al.Perovskite‐based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach.Advanced Materials, 2014, 26(13): 2041-2046. |
[15] | ABRUSCI A, STRANKS S D, DOCAMPO P, et al.High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers.Nano Letters, 2013, 13(7): 3124-3128. |
[16] | WANG J T, BALL J M, BAREA E M, et al.Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells.Nano Letters, 2013, 14(2): 724-730. |
[17] | CHEN Q, ZHOU H, HONG Z, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.Journal of the American Chemical Society, 2013, 136(2): 622-625. |
[18] | HEO J H, IM S H, NOH J H, et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors.Nature Photonics, 2013, 7(6): 486-491. |
[19] | DOCAMPO P, BALL J M, DARWICH M, et al.Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates.Nature Communications, 2013, 4: 1-6. |
[20] | NAGARJUNA P, NARAYANASWAMY K, SWETHA T, et al.CH3NH3PbI3 perovskite sensitized solar cells using a D-A copolymer as hole transport material.Electrochimica Acta, 2015, 151: 21-26. |
[21] | IM J, LEE C, LEE J, et al.6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 2011, 3(10): 4088-4093. |
[22] | KIM H, MORA-SERO I, GONZALEZ-PEDRO V, et al.Mechanism of carrier accumulation in perovskite thin-absorber solar cells.Nature Communications, 2013, 4: 2242-2248. |
[23] | KIM H, LEE J, YANTARA N, et al.High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer.Nano Letters, 2013, 13(6): 2412-2417. |
[24] | DI GIACOMO F, RAZZA S, MATTEOCCI F, et al.High efficiency CH3NH3PbI(3-x)Clx perovskite solar cells with poly(3- hexylthiophene) hole transport layer.Journal of Power Sources, 2014, 251: 152-156. |
[25] | SANCHEZ R S, GONZALEZ-PEDRO V, LEE J, et al.Slow dynamic processes in lead halide perovskite solar cells. characteristic times and hysteresis.The Journal of Physical Chemistry Letters, 2014, 5(13): 2357-2363. |
[26] | BALL J M, LEE M M, HEY A, et al.Low-temperature processed meso-superstructured to thin-film perovskite solar cells.Energy & Environmental Science, 2013, 6(6): 1739-1743. |
[27] | XING G, MATHEWS N, SUN S, et al.Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science, 2013, 342(6156): 344-347. |
[28] | STRANKS S D, EPERON G E, GRANCINI G, et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science, 2013, 342(6156): 341-344. |
[29] | JEON N J, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897-903. |
[30] | NOH J H, IM S H, HEO J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Letters, 2013, 13(4): 1764-1769. |
[31] | PELLET N, GAO P, GREGORI G, et al.mixed‐organic‐cation perovskite photovoltaics for enhanced solar light harvesting.Angewandte Chemie International Edition, 2014, 53(12): 3151-3157. |
[32] | RHEE J H, CHUNG C, DIAU E W.A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites.NPG Asia Materials, 2013, 5(10): e61-e68. |
[33] | IM J, KIM H, PARK N.Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3.APL Materials, 2014, 2(8): 815101-815108. |
[34] | CHEN Q, ZHOU H, HONG Z, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.Journal of the American Chemical Society, 2014, 136(2): 622-625. |
[35] | LIU M, JOHNSTON M B, SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature, 2013, 501(7467): 395-398. |
[36] | ERA M, HATTORI T, TAIRA T, et al.Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition.Chemistry of Materials, 1997, 9(1): 8-10. |
[37] | RAMOS F J, LÓPEZ SANTOS M C, GUILLÉN E, et al. Perovskite solar cells based on nanocolumnar plasma-deposited znO thin films.Chem. Phys. Chem., 2014, 15(6): 1148-1153. |
[38] | CARNIE M J, CHARBONNEAU C, DAVIES M L, et al.A one-step low temperature processing route for organolead halide perovskite solar cells.Chemical Communications, 2013, 49(72): 7893-7895. |
[39] | ETGAR L, GAO P, XUE Z, et al.Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.Journal of the American Chemical Society, 2012, 134(42): 17396-17399. |
[40] | XIAO M, HUANG F, HUANG W, et al.A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells.Angewandte Chemie, 2014, 126(37): 10056-10061. |
[41] | LIANG P W, LIAO C Y, CHUEH C C, et al.Additive enhanced crystallization of solution- processed perovskite for highly efficient planar-heterojunction solar cells.Advanced Materials, 2014, 26(22): 3748-3754. |
[42] | LIANG K, MITZI D B, PRIKAS M T.Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique.Chemistry of Materials, 1998, 10(1): 403-411. |
[43] | TAKEOKA Y, FUKASAWA M, MATSUI T, et al. Intercalated formation of two-dimensional and multi-layered perovskites in organic thin films. Chemical Communications, 2005(3): 378-380. |
[44] | HEO J H, IM S H, NOH J H, et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors.Nature Photonics, 2013, 7(6): 486-491. |
[45] | CHRISTIANS J A, FUNG R C, KAMAT P V.An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide.Journal of the American Chemical Society, 2013, 136(2): 758-764. |
[46] | QIN P, TANAKA S, ITO S, et al.Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency.Nature Communications, 2014, 5: 3834-3839. |
[47] | KE W J, FANG G J, WAN J W, et al.Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells.Nature Communications, 2015, doi: 10.1038/ncomms7700. |
[48] | MEI A, LI X, LIU L, et al.A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.Science, 2014, 345(6194): 295-298. |
[49] | MINEMOTO T, MURATA M.Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation.Current Applied Physics, 2014, 14(11): 1428-1433. |
[50] | DULLWEBER T, LUNDBERG O, MALMSTRÖM J, et al. Back surface band gap gradings in Cu(In,Ga)Se2 solar cells.Thin Solid Films, 2001, 387(1/2): 11-13. |
[51] | BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 2000, 361-362: 527-532. |
[52] | SHI JIANG-JIAN, DONG WAN, XU YU-ZHUAN, et al. Enhanced Performance in perovskite organic lead iodide heterojunction solar cells with metal-insulator-semiconductor back contact. Chinese Physics Letters, 2013, 30(12): 1284021-1-5. |
[53] | SHI J, DONG J, LV S, et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Applied Physics Letters, 2014, 104(6): 639011-1-4. |
[54] | NOH J H, IM S H, HEO J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Letters, 2013, 13(4): 1764-1769. |
[55] | LEIJTENS T, EPERON G E, PATHAK S, et al.Overcoming ultraviolet light instability of sensitized TiO2 with meso- superstructured organometal tri-halide perovskite solar cells.Nature Communications, 2013, 4: 2885-2891. |
[56] | SMITH I C, HOKE E T, SOLIS IBARRA D, et al.A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability.Angewandte Chemie, 2014, 126(42): 11414-11417. |
[57] | LI W, DONG H, WANG L, et al.Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination.Journal of Materials Chemistry A, 2014, 2(33): 13587-13592. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[13] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[14] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||