无机材料学报 ›› 2015, Vol. 30 ›› Issue (11): 1121-1130.DOI: 10.15541/jim20150182

• •    下一篇

纳米异质结光催化材料制取太阳能燃料研究进展

韩 成1, 雷永鹏2, 王应德1   

  1. (国防科技大学1. 新型陶瓷纤维及其复合材料重点实验室; 2. 基础教育学院, 长沙410073)
  • 收稿日期:2015-04-14 修回日期:2015-06-25 出版日期:2015-11-20 网络出版日期:2015-10-20
  • 作者简介:韩 成(1991–), 男, 博士研究生. E-mail: hancheng.com@163.com
  • 基金资助:
    国家自然科学基金(51173202,51203182);低维量子物理国家重点实验室(清华大学)开放基金 (KF201312);材料复合新技术国家重点实验室(武汉理工大学)开放基金(2014-KF-10);湖南省优秀博士学位论文获得者科研项目(YB2014B004);湖南省高校科技创新团队支持计划;国防科技大学创新群体计划

Recent Progress on Nano-heterostructure Photocatalysts for Solar Fuels Generation

HAN Cheng1, LEI Yong-Peng2, WANG Ying-De1   

  1. (1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China; 2. College of Basic Education, National University of Defense Technology, Changsha 410073, China)
  • Received:2015-04-14 Revised:2015-06-25 Published:2015-11-20 Online:2015-10-20
  • About author:HAN Cheng. E-mail: hancheng.com@163.com
  • Supported by:
    National Natural Science Foundation of China (51173202, 51203182);Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (KF201312);State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) (2014-KF-10);Hunan Provincial Education Department (YB2014B004);Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and Aid Program for Innovative Group of National University of Defense Technology

摘要:

光催化制取太阳能燃料主要包括光催化分解H2O制取H2及光催化还原CO2制取碳氢化合物, 是应对能源危机最具前景的方法之一。目前, 太阳能燃料的最高转化效率为5%, 无法满足商业化要求(≥10%)。纳米异质结由于能展现出单组分纳米材料或体相异质结所不具备的独特性质, 更能促进光生电子和空穴快速转移, 提供更多的光生电子或使光生电子具有更强的还原性, 因而能显著提高光催化活性。本文主要综述了几种纳米异质结(I-型、II-型、p-n型及Z-型)的光催化原理及其在制取太阳能燃料方面的研究进展, 并展望了研究发展方向。

关键词: 纳米异质结, 光催化材料, 太阳能燃料, 综述

Abstract:

Photocatalytic solar fuels generation, including H2 production from water splitting and hydrocarbon compounds generation from CO2 reduction, is considered as one of the most perspective strategies to solve energy crisis in the future. State-of-the-art photocatalysts yield the highest energy conversion efficiency of 5%, failed to achieve the goal of 10% for the large-scale economic production of solar fuels. Nano-heterostructure photocatalysts have distinct properties which are not observed in bulk heterostructure or in the individual nanoscale components, thus can facilitate the separation of photoinduced charge carries, provide more electrons or stronger redox ability, and consequently improve photocatalytic activity. This review firstly introduces the photocatalytic principles of diverse nano-heterostructures, including type I, type II, p-n, and Z-scheme types. Their applications in solar fuels generation are summarized, and some perspectives on the development are also discussed.

Key words: nano-heterostructure, photocatalyst, solar fuels, review

中图分类号: