[1] |
YE X, CAI S, DOU Y, et al.Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy.Applied Surface Science, 2012, 259: 799-805.
|
[2] |
DU R L, CHANG J.Preparation and characterization of Zn and Mg doped bioactive glasses. Journal of Inorganic Material, 2004, 19(6): 1353-1358.
|
[3] |
WU F, WEI J, GUO H, et al.Self-setting bioactive calciummagnesium phosphate cement with high strength and de gradability for bone regeneration.Acta Biomaterialia, 2008, 4(6): 1873-1884.
|
[4] |
LIU Z S, LIU C S.Progress in research on magnesium phosphate cement as inorganic binder for bone repair.Materials Review, 2000, 14(5): 29-32.
|
[5] |
JBILOU F, JOLY C, GALLAND S, et al.Biodegradation study of plasticised corn flour/poly(butylene succinate-co-butylene adipate) blends.Polymer Testing, 2013, 32(8): 1565-1575.
|
[6] |
DOREZ G, TAGUET A, FERRY L, et al.Phosphorous compounds as flame retardants for polybutylene succinate/flax biocomposite: additive versus reactive route.Polymer Degradation and Stability, 2014, 201: 152-159.
|
[7] |
XU H L, CAI S B, SELLERS A, et al.Electrospun ultrafine fibrous wheat glutenin scaffolds with three-dimensionally random organization and water stability for soft tissue engineering. Journal of Biotechnology, 2014, 184: 179-186.
|
[8] |
GÓMEZ M D, PARTAL P, MARTÍNEZ I, et al. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics.Bioresource Technology, 2009, 100(5): 1828-1832.
|
[9] |
REZWAN K, CHEN Q Z, BLAKER J J, et al.Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.Biomaterials, 2006, 27: 3413-3431.
|
[10] |
LIU X, RAHAMAN M N, HILMAS G E, et al.Mechanical properties of bioactive glass(13-93) scaffolds fabricated by robotic deposition for structural bone repair.Acta Biomaterialia, 2013, 9(6): 7025-7034.
|
[11] |
CHEN S H, LEI M, XIE X H, et al.PLGA/TCP composite scaffold incorporating bioactive phytomolecule icartin for enhancement of bone defect repair in rabbits.Acta Biomaterialia, 2013, 9(5): 6711-6722.
|
[12] |
VELARD F, BRAUX J, AMEDEE J, et al.Inflammatory cell response to calcium phosphate biomaterial particles: an overview.Acta Biomaterialia, 2013, 9(2): 4956-4963.
|
[13] |
ZHONG K, VASUDEVAN T V, Somasundaran P.Floatability of apatites of different type and origin: role of surface area and porosity.International Journal of Minerral Processing, 1993, 38(3/4): 177-188.
|
[14] |
HUTMACHER D W.Scaffolds in tissue engineering bone and carilage.Biomaterials, 2000, 21(24): 2529-2543.
|
[15] |
ELLI L, DOLFINI E, BARDELLA M T.Gliadin cytotoxicity and in vitro cell cultures.Toxicology Letters, 2003, 146(1): 1-8.
|
[16] |
QIAO Y Q, ZHANG W J, TIAN P, et al.Stimulation of bone growth following zinc incorporation into biomaterials.Biomaterials, 2014, 35(25): 6882-6897.
|
[17] |
ZHANG T, WU X N, HUANG H Y, et al.The beneficial influence of microarc oxidation-coated magnesium alloy on the adhesion, proliferation and osteogenic differentiation of bone marrow stromal cells.Materials Letters, 2014, 137: 362-365.
|