[1] |
MANTHIRAM A, FU Y, SU Y S.Challenges and prospects of lithium/sulfur batteries.Accounts Chem. Res., 2012, 46(5): 1125-1134.
|
[2] |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al.Li-O2 and Li-S batteries with high energy storage.Nat. Mater., 2012, 11(1): 19-29.
|
[3] |
ZHANG S S.Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions.J. Power Sources, 2013, 231: 153-162.
|
[4] |
KIM H, LIM H D, KIM J, et al.Graphene for advanced Li/S and Li/air batteries.Journal of Materials Chemistry A, 2014, 2: 33-47.
|
[5] |
Evers S, Nazar L F.New approaches for high energy density lithium/ sulfur battery cathodes.Accounts Chem. Res., 2012, 46(5): 1135-1143.
|
[6] |
SUO L, HU Y S, LI H, et al.A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries.Nature Communications, 2013, 4: 1481-1489.
|
[7] |
ZHENG J, GU M, WANG C, et al.Controlled nucleation and growth process of Li2S2/Li2S in lithium-sulfur batteries.Journal of the Electrochemical Society, 2013, 160: A1992-A1996.
|
[8] |
ZHENG J, LV D, GU M, et al.How to obtain reproducible results for lithium sulfur batteries?Journal of the Electrochemical Society, 2013, 160: A2288-A2292.
|
[9] |
YANG Y, ZHENG G, CUI Y.Nanostructured sulfur cathodes.Chem. Soc. Rev., 2013, 42: 3018-3032.
|
[10] |
FU Y, SU Y S, MANTHIRAM A.Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries.Acs. Appl. Mater. Inter., 2012, 4: 6046-6052.
|
[11] |
ZHAO C, LIU L, ZHAO H, et al.Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries.Nanoscale, 2014, 6(2): 882-888.
|
[12] |
YANG Y, YU G, CHA J J, et al.Improving the performance of lithium-sulfur batteries by conductive polymer coating.Acs Nano, 2011, 5: 9187-9193.
|
[13] |
LIANG X, LIU Y, WEN Z, et al.A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries.J. Power Sources, 2011, 196: 6951-6955.
|
[14] |
SU Y S, MANTHIRAM A.A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer.Chem. Commun., 2012, 48: 8817-8819.
|
[15] |
CHEN J J, JIA X, SHE Q J, et al.The preparation of nano-sulfur/ MWCNTs and its electrochemical performance.Electrochim Acta, 2010, 55: 8062-8066.
|
[16] |
YIN L C, WANG J L, YANG J, et al.A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries.J. Mater. Chem., 2011, 21: 6807-6810.
|
[17] |
ZHENG G, ZHANG Q, CHA J J, et al.Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries.Nano Lett., 2013, 13(3): 1265-1270.
|
[18] |
JAYAPRAKASH N, SHEN J, MOGANTY S S, et al.A. porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries.Angewandte Chemie International Edition, 2011, 123(26): 6026-6030.
|
[19] |
ZHANG K, ZHAO Q, TAO Z, et al.Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance.Nano Res., 2012, 6: 38-46.
|
[20] |
SEH Z W, LI W, CHA J J, et al.Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium- sulphur batteries.Nature Communications, 2013, 4: 1331-1336.
|
[21] |
LI J, DING B, XU G, et al.Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li-S batteries.Nanoscale, 2013, 5(13): 5743-5746.
|
[22] |
ZHANG Y, ZHAO Y, KONAROV A, et al.One-pot approach to synthesize PPy@S core-shell nanocomposite cathode for Li/S batteries.J. Nanopart Res., 2013, 15(10): 1-7.
|
[23] |
ZHOU W, YU Y, CHEN H, et al.Yolk-shell structure of polyaniline coated sulfur for lithium-sulfur batteries.J. Am. Chem. Soc., 2013, 135(44): 16736-16743.
|
[24] |
XIAO L, CAO Y, XIAO J, et al.A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life.Adv. Mater., 2012, 24: 1176-1181.
|
[25] |
WANG C, WAN W, CHEN J T, et al.Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. Journal of Materials Chemistry A, 2013, 1: 1716-1723.
|
[26] |
ZHANG Y, WANG L, ZHANG A, et al.Novel V2O5/S composite cathode material for the advanced secondary lithium batteries.Solid State Ionics, 2010, 181: 835-838.
|
[27] |
CHOI Y J, JUNG B S, LEE D J, et al.Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell.Phys Scripta, 2007, T129: 62-65.
|
[28] |
SONG M S, HAN S C, KIM H S, et al.Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries.Journal of the Electrochemical Society, 2004, 151: A791-A795.
|
[29] |
ZHANG Y, WU X, FENG H, et al.Effect of nanosized Mg0.8Cu0.2O on electrochemical properties of Li/S rechargeable batteries.Int. J. Hydrogen. Energ., 2009, 34: 1556-1559.
|
[30] |
XU R, BELHAROUAK I, ZHANG X, et al.New developments in lithium sulfur batteries[C]//SPIE defense, security, and sensing. International Society for Optics and Photonics, 2013, 10: 872804.
|
[31] |
EVERS S, YIM T, NAZAR L F.Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery.The Journal of Physical Chemistry C, 2012, 116: 19653-19658.
|
[32] |
LIANG X, WEN Z, LIU Y, et al.A composite of sulfur and polypyrrole-multi walled carbon combinatorial nanotube as cathode for Li/S battery.J. Power. Sources, 2012, 206: 409-413.
|
[33] |
LI G C, HU J J, LI G R, et al.Sulfur/activated-conductive carbon black composites as cathode materials for lithium/sulfur battery.J. Power Sources, 2013, 240: 598-605.
|
[34] |
ZHANG B, LAI C, ZHOU Z, et al.Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials.Electrochim Acta, 2009, 54: 3708-3713.
|
[35] |
ZHOU G, PEI S, LI L, et al.A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries.Adv. Mater., 2014, 26(4): 625-631.
|