[1] |
WEN J W, YU Y, CHEN C H.A review on lithium-ion batteries safety issues: existing problems and possible solutions.Mater. Express, 2012, 2(3): 197-212.
|
[2] |
LI Z, HUANG J, LIAW BY, METZLER V, et al.A review of lithium deposition in lithium-ion and lithium metal secondary batteries.J. Power Sources, 2014, 254: 168-182.
|
[3] |
YANG L J, CHENG X Q, GAO Y Z, et al.Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling.ACS Appl. Mater. Interfaces, 2014, 6(15): 12962-12970.
|
[4] |
GUY D, LESTRIEZ B, BOUCHET R, et al.Improvement of lithium battery performance through composite electrode microstructure optimization.Ionics, 2004, 10(5/6): 443-449.
|
[5] |
FATTAKHOVA D, KAVAN L, KRTIL P.Lithium insertion into titanium dioxide (anatase) electrodes: microstructure and electrolyte effects.J. Solid State Electrochem., 2001, 5(3): 196-204.
|
[6] |
JIANG F M, ZENG J B, WU W.Design and optimization for lithium- ion battery electrode: mesoscale numerical model.Advanced Materials Industry, 2011, 12: 2-6.
|
[7] |
ZENG J B, JIANG F M.A mesoscale smoothed particle hydrodynamics model for lithium-ion batteries.Acta Phys. -Chim. Sin. , 2013, 29(11): 2371-2384.
|
[8] |
ZENG J B, WU W, JIANG F M.Smoothed particle hydrodynamics prediction of effective transport coefficients of lithium-ion battery electrodes.Solid State Ionics, 2014, 260(1): 76-85.
|
[9] |
QUIBLIER J A.A new three-dimensional modeling technique for studying porous media.J. Colloid Interface Sci., 1984, 98(1): 84-102.
|
[10] |
YEONG C L Y, TORQUATO S. Reconstructing random media.Phys. Rev., 1998, 57(1): 495-506.
|
[11] |
ČAPEK P, HEJTMÁNEK V, BRABEC L, et al. 3D stochastic replicas of porous solids: a way to improve predicted diffusivity.Diffusion-Fundamentals, 2009, 91: 1-4.
|
[12] |
KIM S H, PITSCH H.Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells.J. Electrochem. Soc., 2009, 156(6): 673-681.
|
[13] |
WU W, JIANG F M.Simulated annealing reconstruction and characterization of a LiCoO2 lithium-ion battery cathode.Chin. Sci. Bull., 2013, 58(36): 4692-4695.
|
[14] |
WU W, JIANG F M.Microstructure reconstruction and characterization of PEMFC electrodes.Int. J. Hydrogen Energy, 2014, 39(28): 15894-15906.
|
[15] |
SIDDIQUE N A, LIU F.Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer.Electrochimica Acta, 2010, 55(19): 5357-5366.
|
[16] |
WU W, JIANG F M, CHEN Y, et al.3D monte carlo reconstruction and characterization of LiCoO2 cathode.Journal of Inorganic Materials, 2013, 28(11): 1243-1247.
|
[17] |
STEPHENSON D E, HARTMAN E M, HARB J N, et al.Modeling of particle-particle interactions in porous cathodes for lithium-ion batteries.J. Electrochem. Soc., 2007, 154(12): A1146-A1155.
|
[18] |
MARKERVICH E, SALITRA G, LEVI M D, et al.Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM.J. Power Sources, 2005, 146(1/2): 146-150.
|
[19] |
吴其修, 安秀梅, 刘正荣. 锂离子电池复合碳负极材料及其制备方法. 中国C01B31/02, CN 200610060814, 2006.05.19.
|
[20] |
肖峰, 孙华军. 一种锂离子二次电池的负极及包括该负极的锂离子二次电池. 中国H01M10/40, CN 200510002208, 2005. 01. 17.
|
[21] |
PENG P, SUN Y Q, JIANG F M.Thermal analyses of LiCoO2 lithium-ion battery during oven tests.Heat Mass Transfer., 2014, 50(10): 1405-1416.
|
[22] |
BABALIEVSKI F.Cluster counting: the Hoshen-Kopelman algorithm versus spanning tree approaches.J. Modern Phys. , 1998, 9(1): 43-60.
|
[23] |
DELERUE J F, PERRIER E, YU Z Y, et al.New algorithms in 3D image analysis and their application to the measurement of a spatialized pore size distribution in soils.Phys. Chem. Earth A: Solid Earth Geodesy, 1999, 24(7): 639-644.
|
[24] |
CHEOLWOONG L, BO Y, YIN L L, et al.Geometric characteristics of three dimensional reconstructed anode electrodes of lithium- ion batteries.Energies, 2014, 7(4): 2558-2572.
|
[25] |
THIELE S, ZENGERLE R, ZIEGLER C.Nano-morphology of a polymer electrolyte fuel cell catalyst layer-imaging, reconstruction and analysis.Nano Res., 2011, 4(9): 849-860.
|