无机材料学报 ›› 2015, Vol. 30 ›› Issue (7): 683-693.DOI: 10.15541/jim20140648

• • 上一篇    下一篇

基于能带结构理论的半导体光催化材料改性策略

王丹军1, 2, 张 洁1, 郭 莉1, 申会东1, 付 峰1, 薛岗林2, 方轶凡1   

  1. (1. 延安大学 化学与化工学院, 陕西省化学反应工程重点实验室, 延安 716000; 2. 西北大学 化学与材料科学学院, 教育部合成与天然产物重点实验室, 西安 710069)
  • 收稿日期:2014-12-16 修回日期:2015-01-17 出版日期:2015-07-20 网络出版日期:2015-06-25
  • 基金资助:
    国家自然科学基金重点项目(20973133);教育部合成与天然产物重点实验室基金(338080055);陕西省科技厅工业攻关项目(2013K11-08, 2013SZS20-P01);陕西省教育厅基金(13JK0669);延安市工业攻关项目(2011kg-13);大学生创新项目(1242)

Modification Strategies for Semiconductor Photocatalyst Based on Energy Band Structure Theory

WANG Dan-Jun1, 2, ZHANG Jie1, GUO Li1, SHEN Hui-Dong1, FU Feng1, XUE Gang-Lin2, FANG Yi-Fan1   

  1. (1. College of Chemistry & Chemical Engineering, Yan'an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000, China; 2. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Educational), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China)
  • Received:2014-12-16 Revised:2015-01-17 Published:2015-07-20 Online:2015-06-25
  • Supported by:
    National Natural Science Foundation of China(20973133);Open Foundation of Key Laboratory of Synthetic and Natural Functional Molecule Chemistry(Ministry of Educational)(338080055);Natural Science Program of Education Department of Shaanxi Province (2013K11-08, 2013SZS20-P01);Shaanxi Provincial Education Department Fund(13JK0669);Key Industry Plan of Yan’an City (2011kg-13);College students’ Innolvative Projects(1242)

摘要:

作为一种新型的环境净化技术, 半导体光催化技术已引起全世界范围的广泛关注。然而, 传统光催化剂对太阳能利用率低、且光生电子-空穴对易于复合, 极大限制了该技术的实际应用。因此, 通过不同的改性手段合成具有可见光响应活性的光催化材料成为光催化领域研究的热点课题。提高光催化剂的活性, 除了合成方法的优选(调控尺寸、形貌、结晶度、微结构)外, 改性也是提高催化剂活性的主要手段。本文从半导体光催化的基本原理出发, 概述了半导体光催化剂改性的基本思想: 即拓宽太阳光利用范围和提高光生电子-空穴的寿命。围绕这一思想, 常用的改性策略有化学结构调控(能带调控), 以拓宽光谱响应范围; 表面修饰(表面敏化、半导体耦合和贵金属沉积)以提高电荷的分离效率。合适的能带结构是拓展催化剂的可见光响应范围和提高电荷分离效率的关键。

关键词: 催化剂, 光催化, 能带结构, 改性, 策略, 综述

Abstract:

Design and controllable synthesis of catalyst and its property tuning are an interesting subject for physical chemistry, materials chemistry and catalytic chemistry. As a new environmental-purifying technology, semiconductor photocatalytic oxidation technology has arosen worldwide attention. However, conventional photocatalyst exhibits poor utilization of solar energy and low efficient of photogenerated charge separation, which restricts the practical application of the technology. Therefore, it is still a challenging topic to design and synthesize visible-light-response photocatalytic materials with higher utilization efficiency of solar energy. Besides tuning synthesis method (by controlling particle size, morphology, crystallinity and other microstructures, etc), modification is a crucial strategy for the activity enhancement of photocatalyst. In this paper, we reviewed the basic mechanism for the photocatalyst modification from the view of semiconductor energy structure. Taking consideration of the basic mechanism and process of photocatalysis, there are two key modification strategies: chemical structure modification (energy band modification) to broaden the light absorption and surface modification (surface sensitization, semiconductor combinations and noble metal deposition) to increase life-time of carrier. Suitable band structure is responsible for the visible-light harvesting and effective separation of carrier of semiconductor photocatalyst.

Key words: catalyst, photocatalysis, energy band structure, modification, strategies, review

中图分类号: