无机材料学报 ›› 2015, Vol. 30 ›› Issue (6): 653-661.DOI: 10.15541/jim20140611
田丽媛, 姚志恒, 李 凤, 王永龙, 叶世海
收稿日期:
2014-11-24
修回日期:
2015-01-26
出版日期:
2015-06-04
网络出版日期:
2015-05-22
作者简介:
田丽媛(1989–), 女, 硕士研究生. E-mail: lytian@mail.nankai.edu.cn
基金资助:
TIAN Li-Yuan, YAO Zhi-Heng, LI Feng, WANG Yong-Long, YE Shi-Hai
Received:
2014-11-24
Revised:
2015-01-26
Published:
2015-06-04
Online:
2015-05-22
About author:
TIAN Li-Yuan. E-mail: lytian@mail.nankai.edu.cn
Supported by:
摘要:
对比研究了不同制备方法、电解液组成和碳结构对红磷/碳复合材料电化学性能的影响。利用球磨法制备了红磷/活性炭(AC)复合材料, 其较差的首次库伦效率和循环容量表明活性物质红磷没有得到有效利用。对多种电解液进行了优选, 得到最优电解液为1 mol/L LiPF6的EC/EMC/DMC (1: 1: 1 V/V)酯类电解液。通过气相沉积法制备了红磷/导电碳黑(BP2000)和红磷/活性炭两种复合材料。利用热重分析(TGA)、X射线衍射分析(XRD)、扫描电子显微镜(SEM)、BET比表面分析和循环伏安法(CV)对上述复合材料的形貌、结构和电化学性能进行了研究。结果表明: 含磷量为45%的红磷/活性炭复合材料充放电平台分别为1.0 V和0.75 V, 具有良好的可逆性。首次放电比容量和充电比容量分别为1500和1200 mAh/g, 库伦效率为82.5%。随后循环中库伦效率超过了97.5%。其1200 mAh/g的循环容量对应于2.8个电子的可逆反应。以第二次的稳定放电容量计算, 50次循环后容量保持率为75.0%。该复合材料较高的循环容量和良好的循环稳定性受益于无定形的活性物质红磷在活性炭导电基底孔结构中, 特别是微孔中的均匀分布。
中图分类号:
田丽媛, 姚志恒, 李 凤, 王永龙, 叶世海. 红磷/碳复合材料的制备及电化学性能研究[J]. 无机材料学报, 2015, 30(6): 653-661.
TIAN Li-Yuan, YAO Zhi-Heng, LI Feng, WANG Yong-Long, YE Shi-Hai. Synthesis and Electrochemical Performance of Red Phosphorus/Carbon Composites[J]. Journal of Inorganic Materials, 2015, 30(6): 653-661.
图1 球磨法制备的含磷量45%的磷/活性炭复合材料的电化学性能
Fig. 1 Electrochemical performance of 45% P/AC composites prepared by a ball-milling method (a) CV curves, (b) Initial three charge (delithiation)-discharge (lithiation) curves of P/AC composite and (c) cycle performance of P/AC composite. Current density is 100 mA/g, the scan rate is 0.1 mV/s
图3 磷/活性炭复合材料在不同电解液中的初始三次充放电曲线(a, b和c)及循环寿命曲线(d, e和f)
Fig. 3 The initial three charge-discharge curves (a, b and c) and cycle performance (d, e and f) of P/AC composite in different electrolytes
Sample | S/(m2·g-1) | V /(cm3·g-1) | Pore size/nm | ||||
---|---|---|---|---|---|---|---|
SBET | Smeso | Smicro | Vmeso | Vmicro | Dmeso | Dmicro | |
Blank BP2000 | 1128.1 | 758.2 | 369.9 | 0.86 | 0.57 | 2.00 | 0.63 |
Red P/BP2000 | 275.2 | 378.2 | 164.4 | 0.50 | 0.08 | 2.48 | 1.06 |
Subtracted value | 852.9 | 380 | 205.5 | 0.36 | 0.49 | - | - |
Blank AC | 1528.2 | 627.5 | 900.7 | 0.46 | 0.88 | 1.93 | 0.64 |
Red P/AC | 127.1 | 185.9 | 55.6 | 0.20 | 0.02 | 2.55 | 1.05 |
Subtracted value | 1401.1 | 441.6 | 844.4 | 0.26 | 0.86 | - | - |
表 1 碳基底和相应红磷/碳复合材料的比表面积和孔结构参数
Table 1 Surface area and pore-structure parameters of carbon substrates and corresponding red P/carbon composites
Sample | S/(m2·g-1) | V /(cm3·g-1) | Pore size/nm | ||||
---|---|---|---|---|---|---|---|
SBET | Smeso | Smicro | Vmeso | Vmicro | Dmeso | Dmicro | |
Blank BP2000 | 1128.1 | 758.2 | 369.9 | 0.86 | 0.57 | 2.00 | 0.63 |
Red P/BP2000 | 275.2 | 378.2 | 164.4 | 0.50 | 0.08 | 2.48 | 1.06 |
Subtracted value | 852.9 | 380 | 205.5 | 0.36 | 0.49 | - | - |
Blank AC | 1528.2 | 627.5 | 900.7 | 0.46 | 0.88 | 1.93 | 0.64 |
Red P/AC | 127.1 | 185.9 | 55.6 | 0.20 | 0.02 | 2.55 | 1.05 |
Subtracted value | 1401.1 | 441.6 | 844.4 | 0.26 | 0.86 | - | - |
图7 含磷量为45%红磷/导电碳黑复合材料的前三次充放电曲线(a)和循环性能曲线(b); 45%红磷/活性炭复合材料的前三次充放电曲线图(c) 和循环性能曲线(d)
Fig. 7 Initial three charge-discharge curves (a) and cycle performance (b) of P/BP2000 composite (45%), initial three charge-discharge curves (c) and cycle performance (d) of P/AC composite (45%)
图S1 非活性组分的容量贡献(a和b)导电碳黑空白极片(导电碳黑、PTFE和乙炔黑,质量比38.5:10:20)的初始三周比容量和循环寿命;(c和d)活性炭空白极片(活性炭、PTFE和乙炔黑,质量比38.5:10:20)的初始三周比容量贡献和循环寿命
Fig. S1 The capacity contribution of inactive component. (a and b) The initial 3 charge/discharge curves and cycle performance of BP2000 blank anode (BP2000, PTFE and AB with weight ratio of 38.5:10:20). (c and d) The initial 3 charge/discharge curves and cycle performance of AC blank anode (AC, PTFE and AB with weight ratio of 38.5:10:20)
[1] | LEE S W, YABUUCHI N, GALLANT B M, et al.High-power lithium batteries from functionalized carbon-nanotube electrodes.Nature Nanotechnology, 2010, 5(7): 531-537. |
[2] | JI L W, LIN Z, ALCOUTLABI M, et al.Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries.Energy & Environmental Science, 2011, 4(8): 2682-2699. |
[3] | WANG Y L, SUN Q L, ZHAO Q Q, et al.Rechargeable lithium/ iodine battery with superior high-rate capability by using iodine- carbon composite as cathode.Energy & Environmental Science, 2011, 4(10): 3947. |
[4] | HOU P Y, ZHANG L Q, GAO X P.A high-energy, full concentration- gradient cathode material with excellent cycle and thermal stability for lithium ion batteries.Journal of Materials Chemistry A, 2014, 2(40): 17130-17138. |
[5] | GAO X P, YANG H X.Multi-electron reaction materials for high energy density batteries.Energy & Environmental Science, 2010, 3(2): 174. |
[6] | KANG K.Electrodes with high power and high capacity for rechargeable lithium batteries.Science, 2006, 311(5763): 977-980. |
[7] | LI X, LIU J, BANIS M N, et al.Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application.Energy & Environmental Science, 2014, 7(2): 768. |
[8] | WANG W G, WANG X, TIAN L Y, et al.In situ sulfur deposition route to obtain sulfur-carbon composite cathodes for lithium-sulfur batteries.Journal of Materials Chemistry A, 2014, 2(12): 4316. |
[9] | WANG W, LI G C, WANG Q, et al.Sulfur-polypyrrole/graphene multi-composites as cathode for lithium-sulfur battery.Journal of the Electrochemical Society, 2013, 160(6): A805-A810. |
[10] | BHASKAR A, DEEPA M, RAO T N.Size-controlled SnO2 hollow spheres via a template free approach as anodes for lithium ion batteries.Nanoscale, 2014, 6(18): 10762-10771. |
[11] | YU ZHEN-JUN,WANG YAN-LI,DENG HONG-GUI, et al.Synthesis and electrochemical performance of SnO2/Graphene anode material for lithium ion batteries.Journal of Inorganic Materials, 2013, 28(5): 515-520. |
[12] | NOH J H, LEE K Y, LEE J K.Electrochemical characteristics of phosphorus doped Si-C composite for anode active material of lithium secondary batteries.Transactions of Nonferrous Metals Society of China, 2009, 19(4): 1018-1022. |
[13] | ZHU X, NING G, MA X, et al.High density Co3O4 nanoparticles confined in a porous graphene nanomesh network driven by an electrochemical process: ultra-high capacity and rate performance for lithium ion batteries.Journal of Materials Chemistry A, 2013, 1(44): 14023. |
[14] | PARK H C, LEE K H, LEE Y W, et al.Mesoporous molybdenum nitride nanobelts as an anode with improved electrochemical properties in lithium ion batteries.Journal of Power Sources, 2014, 269: 534-541. |
[15] | STAN M C, KLÖPSCH R, BHASKAR A, et al. Cu3P binary phosphide: synthesis via a wet mechanochemical method and electrochemical behavior as negative electrode material for lithium-ion batteries.Advanced Energy Materials, 2013, 3(2): 231-238. |
[16] | CARENCO S, SURCIN C, MORCRETTE M, et al.Improving the Li-electrochemical properties of monodisperse Ni2P nanoparticles by self-generated carbon coating.Chemistry of Materials, 2012, 24(4): 688-697. |
[17] | BOYANOV S, ANNOU K, VILLEVIEILLE C, et al.Nanostructured transition metal phosphide as negative electrode for lithium- ion batteries.Ionics, 2007, 14(3): 183-190. |
[18] | CHEN X, LI X, DING F, et al.Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes.Nano Letters, 2012, 12(8): 4124-4130. |
[19] | YUE L, ZHANG L, ZHONG H.Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries.Journal of Power Sources, 2014, 247: 327-331. |
[20] | GUO C, WANG D, LIU T, et al.A three dimensional SiOx/C@RGO nanocomposite as a high energy anode material for lithium-ion batteries.Journal of Materials Chemistry A, 2014, 2(10): 3521. |
[21] | WEN Z S, YANG J, WANG B F, et al.High capacity silicon/ carbon composite anode materials for lithium ion batteries.Electrochemistry Communications, 2003, 5(2): 165-168. |
[22] | PENG PENG, LIU YU, WEN ZHAO-YIN.Electrochemical performance of silicon/carbon/graphite composite anode for lithium ion batteries.Journal of Inorganic Materials, 2013, 28(11): 1195-1199. |
[23] | DU F H, WANG K X, FU W, et al.A graphene-wrapped silver- porous silicon composite with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1(43): 13648. |
[24] | WANG L, HE X, LI J, et al.Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries.Angewandte Chemie International Edition, 2012, 51(36): 9034-9037. |
[25] | QIAN J, QIAO D, AI X, et al.Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries.Chemical Communications, 2012, 48(71): 8931. |
[26] | MARINO C, DEBENEDETTI A, FRAISSE B, et al.Activated- phosphorus as new electrode material for Li-ion batteries.Electrochemistry Communications, 2011, 13(4): 346-349. |
[27] | MARINO C, BOULET L, GAVEAU P, et al.Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism.Journal of Materials Chemistry, 2012, 22(42): 22713. |
[28] | KIM S, FANG S, ZHANG Z, et al.The electrochemical and local structural analysis of the mesoporous Li4Ti5O12 anode.Journal of Power Sources, 2014, 268: 294-300. |
[29] | ZHANG Z, ZHOU Z, NIE S, et al.Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries.Journal of Power Sources, 2014, 267: 388-393. |
[30] | TAO T, HE L, LI J, et al.Large scale synthesis of TiO2-carbon nanocomposites using cheap raw materials as anode for lithium ion batteries.Journal of Alloys and Compounds, 2014, 615: 1052-1055. |
[31] | GAO JIAN, MU XIN, LI JIAN-JUN, et al.Preparation and characterization of porous spherical Li4Ti5O12/C anode material for lithium ion batteries.Journal of Inorganic Materials, 2012, 27(3): 253-257. |
[32] | KIM J S, CHOI W, BYUN D, et al.Electrochemical characteristics of phosphorus doped silicon for the anode material of lithium secondary batteries.Solid State Ionics, 2012, 212: 43-46. |
[33] | SUN L Q, LI M J, SUN K, et al.Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries.The Journal of Physical Chemistry C, 2012, 116(28): 14772-14779. |
[34] | KIM Y, PARK Y, CHOI A, et al.An amorphous red phosphorus/carbon composite as a promising anode material for sodium Ion batteries.Advanced Materials, 2013, 25(22): 3045-3049. |
[35] | QIAN J, WU X, CAO Y, et al.High capacity and rate capability of amorphous phosphorus for sodium ion batteries.Angewandte Chemie-International Edition, 2013, 52(17): 4633-4636. |
[36] | SUN S, GHIMBEU C M, JANOT R, et al.One-pot synthesis of LiFePO4-carbon mesoporous composites for Li-ion batteries.Microporous and Mesoporous Materials, 2014, 198: 175-184. |
[37] | XU H, DENG Y, SHI Z, et al.Graphene-encapsulated sulfur (GES) composites with a core-shell structure as superior cathode materials for lithium-sulfur batteries.Journal of Materials Chemistry A, 2013, 1(47): 15142. |
[38] | WENG W, LIN H, CHEN X, et al.Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes.Journal of Materials Chemistry A, 2014, 2(24): 9306. |
[39] | BRUECKNER J, THIEME S, GROSSMANN H T, et al.Lithium- sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance.Journal of Power Sources, 2014, 268: 82-87. |
[1] | 吐尔洪·木尼热, 赵红刚, 马玉花, 齐献慧, 李钰宸, 闫沉香, 李佳文, 陈平. 单晶WO3/红磷S型异质结的构建及光催化活性研究[J]. 无机材料学报, 2023, 38(6): 701-707. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 宿拿拿, 韩静茹, 郭印毫, 王晨宇, 石文华, 吴亮, 胡执一, 刘婧, 李昱, 苏宝连. 基于ZIF-8的三维网络硅碳复合材料锂离子电池性能研究[J]. 无机材料学报, 2022, 37(9): 1016-1022. |
[4] | 王洋, 范广新, 刘培, 尹金佩, 刘宝忠, 朱林剑, 罗成果. 钾离子掺杂提高锂离子电池正极锰酸锂性能的微观机制[J]. 无机材料学报, 2022, 37(9): 1023-1029. |
[5] | 朱河圳, 王选朋, 韩康, 杨晨, 万睿哲, 吴黎明, 麦立强. 超高镍LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2正极材料的储锂稳定性的提升机制[J]. 无机材料学报, 2022, 37(9): 1030-1036. |
[6] | 冯锟, 朱勇, 张凯强, 陈长, 刘宇, 高彦峰. 勃姆石纳米片增强锂离子电池隔膜性能研究[J]. 无机材料学报, 2022, 37(9): 1009-1015. |
[7] | 陈莹, 栾伟玲, 陈浩峰, 朱轩辰. 基于应力场的锂离子电池正极多尺度失效研究[J]. 无机材料学报, 2022, 37(8): 918-924. |
[8] | 苏东良, 崔锦, 翟朋博, 郭向欣. 石榴石型Li6.4La3Zr1.4Ta0.6O12对Si/C负极表面固体电解质中间相的调控机制研究[J]. 无机材料学报, 2022, 37(7): 802-808. |
[9] | 江依义, 沈旻, 宋半夏, 李南, 丁祥欢, 郭乐毅, 马国强. 双功能电解液添加剂对锂离子电池高温高电压性能的影响[J]. 无机材料学报, 2022, 37(7): 710-716. |
[10] | 肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668. |
[11] | 王禹桐, 张非凡, 许乃才, 王春霞, 崔立山, 黄国勇. 水系锂离子电池负极材料LiTi2(PO4)3的研究进展[J]. 无机材料学报, 2022, 37(5): 481-492. |
[12] | 王晶, 徐守冬, 卢中华, 赵壮壮, 陈良, 张鼎, 郭春丽. 钠离子电池中空结构CoSe2/C负极材料的制备及储钠性能研究[J]. 无机材料学报, 2022, 37(12): 1344-1350. |
[13] | 吴西士, 朱云洲, 黄庆, 黄政仁. 树脂基多孔碳孔结构对Cf/SiC复合材料连接性能的影响[J]. 无机材料学报, 2022, 37(12): 1275-1280. |
[14] | 李昆儒, 胡省辉, 张正富, 郭玉忠, 黄瑞安. 源于溪木贼的高性能锂离子电池三维多孔生物质硅/碳复合负极材料[J]. 无机材料学报, 2021, 36(9): 929-935. |
[15] | 王影, 张文龙, 邢彦锋, 曹苏群, 戴新义, 李晶泽. 非晶态磷酸锂包覆钛酸锂电极在0.01~3.00 V电压范围的性能研究[J]. 无机材料学报, 2021, 36(9): 999-1005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||