无机材料学报 ›› 2015, Vol. 30 ›› Issue (6): 561-570.DOI: 10.15541/jim20140492
• • 下一篇
王晓媛1, 闫亚宾1, 嶋田隆広2, 北村隆行2
收稿日期:
2014-09-26
修回日期:
2014-11-10
出版日期:
2015-06-04
网络出版日期:
2015-05-22
基金资助:
WANG Xiao-Yuan1, YAN Ya-Bin1, SHIMADA Takahiro2, KITAMURA Takayuki2
Received:
2014-09-26
Revised:
2014-11-10
Published:
2015-06-04
Online:
2015-05-22
Supported by:
摘要:
纳米铁电材料的几何构型和特征尺寸严重影响着材料的铁电性, 对微电子器件中功能材料的可靠性有着至关重要的影响。数值模拟是研究铁电材料物理特性的重要手段, 并且当材料的特征尺寸缩小至数个纳米的量级时, 由于极小试样精密制备和微小物理量准确测量等方面困难的制约, 数值模拟可能是唯一有效的办法。本文综述了典型二维、一维及零维纳米铁电材料铁电性的若干数值模拟研究进展, 重点介绍了纳米铁电材料的极化分布、铁电相变、铁电临界尺寸和力电耦合特性等关键问题的研究成果, 展望了纳米铁电材料模拟研究方面的研究重点。
中图分类号:
王晓媛, 闫亚宾, 嶋田隆広, 北村隆行. 纳米铁电材料铁电性及其力电耦合特性的原子尺度模拟研究[J]. 无机材料学报, 2015, 30(6): 561-570.
WANG Xiao-Yuan, YAN Ya-Bin, SHIMADA Takahiro, KITAMURA Takayuki. Research Progress in Atomistic Simulation on Ferroelectricity and Electromechanical Coupling Behavior of Nanoscale Ferroelectrics[J]. Journal of Inorganic Materials, 2015, 30(6): 561-570.
图4 (a)、(b)和(c)为发生c(2×2)表面重组时表面TiO2层和PbO层原子的AFD、AFE和FE位移图, (d)、(e)和(f)为极化方向示意图[48]
Fig.4 Atomic displacements in TiO2 and PbO planes, for the AFD, AFE and FE distortions of the c(2×2) surface reconstruction (a-c), and schematic representation of the polarization distortion parameters, respectively (d-f)[48]
图5 拉伸应变εzz作用下边缘处由(a)PbO表面层和(b)TiO2表面层构成的PbTiO3纳米线平均铁电极化P的变化趋势, 其中1×1、2×2和3×3代表纳米线横截面的大小[58]
Fig. 5 Averaged polarization, P, in (a) PbO-terminated and (b) TiO2-terminated nanowires with the cross-section of the 1×1、2×2 and 3×3 cells as a function of tensile strain, εzz[58]
图6 (a)4×4 TiO2表面纳米线面内电偶极子分布, (b)~ (f)4×4纳米线各原子的面内位移[66]
Fig. 6 (a) Dipole moments, and (b)-(f) in-plane displacements of individual atoms with respect to a paraelectric reference state for a 4×4 TiO2-terminated PbTiO3 nanowire[66]
[1] | JONA F, SHIRANE G.Ferroelectric crystals. New York: Dover, 1993: 23-72. |
[2] | 钟维烈. 铁电体物理学. 北京: 高等教育出版社, 1996, 7:105. |
[3] | SCOTT J F. Ferroelectric Memories.Berlin; Springer, 2000: 57-91. |
[4] | IKEDA T.Fundamentals of Piezoelectricity. New York: Oxford University Press, 1996: 13-35. |
[5] | LINES M E, Glass A M.Principles and Applications of Ferroelectrics and Related Materials. Oxford: Clarendon, 1997: 21-45. |
[6] | RAMESH R.Thin Film Ferroelectric Materials and Devices. Boston: Kluwer Academic, 1997: 4-19. |
[7] | VARGHESE J, WHATMORE R W, HOLMES J D.Ferroelectric nanoparticles, wires and tubes: synthesis, characterisation and applications.J. Mater. Chem. C, 2013, 15(1): 2618-2638. |
[8] | YOURDKHANI A, CARUNTU G.Characterization of the microstructural and piezoelectric properties of PbTiO3 thin films synthesized by liquid-phase deposition.J. Phys. Chem. C, 2011, 115(30): 14797-14805. |
[9] | LU X, ZHANG D, ZHAO Q, et al.Large-scale sysnthesis of necklace-like single-crystalline PbTiO3 nanowires.Macromol. Rapid Commun., 2006, 27(1): 76-80. |
[10] | HONG S, CHOI T, JEON J H, et al.Large resistive switching in ferroelectric BiFeO3 nano-island based switchable diodes.Advanced. Mater., 2013, 25(16): 2339-2343. |
[11] | SON J Y, JUNG I.Ferroelectric PbTiO3 nanodots shattered using atomic force microscopy.J. Am. Ceram. Soc., 2012, 95(2): 480-482. |
[12] | NAUMOV I I, BELLAICHE L, FU H.Unusual phase transitions in ferroelectric nanodisks and nanorods.Nature, 2004, 432(7018): 737-740. |
[13] | YUN W S, URBAN J J, GU Q, et al.Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy.Nano Lett., 2002, 2(5): 447-450. |
[14] | JIANG B, PENG J L, BURSILL L A, et al. Size effects on ferroelectricity of ultrafine particles of PbTiO3. J. Appl. Phys., 2000, 87(7): 037601-1-4. |
[15] | WU Z, COHEN R E. Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. Phys. Rev. Lett, 2005, 95(3): 037601-1-4. |
[16] | DUAN Y, QIN L, TANG G, et al. Influence of in-plane biaxial stress on the structural properties, ferroelectric response, piezoelectricity of tetragonal PbTiO3. J. Appl. Phys., 2009, 105(3): 033706-1-4. |
[17] | KORNEV I, BELLAICHE L, BOUVIER P, et al. Ferroelectricity of perovskites under pressure. Phys. Rev. Lett., 2005, 95(19): 196804-1-4. |
[18] | DIÉGUEZ O, RABE K M, VANDERBILT D. First-principles study of epitaxial strain in perovskites. Phys. Rev. B, 2005, 72(14): 144101-1-9. |
[19] | YANG W, MA X L, WANG H T, et al.Advances in nanomechanics.Advances in Mechanics, 2002, 32(2): 161-174. |
[20] | GUO T Z, GUO W L.Recent advances of numerical simulation methods in nanomechanics.Advances in Mechanics, 2002, 32(2): 175-188. |
[21] | OUYANG Y F, ZHONG X P.Interatomic potentials for computer simulation of condensed matters. Advances in Mechanics, 2006, 36(3): 321-343. |
[22] | HOHENBERG P, KOHN W.Inhomogeneous electron gas.Phys. Rev., 1964, 136(3B): B864-B871. |
[23] | KOHN W, SHAM L.Self-consistent equations including exchange and correlation effects.Phys. Rev., 1965, 140(4A): A1133-A1138. |
[24] | OUYANG Y, ZHONG X.Interatomic potentials for computer simulation of condensed matters,Advances in Mechanics, 2006, 36(3): 321-343. |
[25] | RAPAPORT D C.The Art of Molecular Dynamics Simulation, Second Edition. Cambridge: Cambridge University Press, 2004: 1-124. |
[26] | CHEN L Q.Phase-field models for microstructure evolution.Annu. Rev. Mater. Res., 2002, 32(1): 113-140. |
[27] | CHEN L Q, YANG W.Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics.Phys. Rev. B, 1994, 50(21): 15752-15756. |
[28] | FONG D D, STEPHENSON G B, STREIFFER S K, et al.Ferroelectricity in ultrathin perovskite films.Science, 2004, 304(5677): 1650-1653. |
[29] | JUNQUERA J, GHOSEZ P.Critical thickness for ferroelectricity in perovskite ultrathin films.Nature, 2003, 422(6931): 506-509. |
[30] | SAI N, KOLPAK A M, RAPPE A M. Ferroelectricity in ultrathin perovskite films. Phys. Rev. B, 2005, 72(2): 020101(R)-1-4. |
[31] | UMENO Y, ALBINA J M, MEYER B, et al. Ab initio calculations of ferroelectric instability in PbTiO3 capacitors with symmetric and asymmetric electrode layers. Phys. Rev. B, 2009, 80(20): 205122-1-8. |
[32] | AGUADO-PUENTA P, JUNQUERA J. Ferromagneticlike closure domains in ferroelectric ultrathin films: first-principles simulations. Phys. Rev. Lett., 2008, 100(17): 177601-1-4. |
[33] | DREZNER Y, BERGER S.Thermodynamic stability of BaTiO3 nano-domains.Materials Letters, 2005, 59(12): 1598-1602. |
[34] | TENNE D A, TURNER P, SCHMIDT J D, et al. Ferroelectricity in ultrathin BaTiO3 films: probing the size effect by ultraviolet Raman spectroscopy. Phys. Rev. Lett., 2009, 103(17): 177601-1-4. |
[35] | YIN B, QU S. Origin of the vanishing critical thickness for ferroelectricity in free-standing PbTiO3 ultrathin films from first principles. J. Appl. Phys., 2013, 114(6): 063703-1-6. |
[36] | RESTA R, POSTERNAK M, BALDERESCHI A.Towards a quantum theory of polarization in ferroelectrics: the case of KNbO3.Phys. Rev. Lett., 1993, 70(7): 1010-1013. |
[37] | KING-SMITH R D, VANDERBILT D. First-principles investigation of ferroelectricity in perovskite compounds.Phys. Rev. B, 1994, 49(9): 5828-5844. |
[38] | SHIRANE G, PEPINSKY R.X-ray and neutron diffraction study of ferroelectric PbTiO3.Acta Crystallographica, 1956, 9(2): 131-140. |
[39] | GLAZER A M, MABUD S A.Powder profile refinement of lead zirconate titanate at several temperatures: II. Pure PbTiO3.Acta Crystallographica, Section B: Structural Science, 1978, 34(4): 1065-1070. |
[40] | RESTA R.Manifestations of Berry’s phase in molecules and condensed matter.J. Phys.: Condens. Matter, 2000, 12(9): R107-R143. |
[41] | RABE K M.Theoretical investigations of epitaxial strain effects in ferroelectric oxide thin films and superlattices.Current Opinion in Solid State and Materials Science, 2005, 9(3): 122-127. |
[42] | FUJISAWA H, SHIMIZU M, NIU H, et al. Ferroelectricity and local currents in epitaxial 5 - and 9-nm-thick Pb (Zr, Ti)O3 ultrathin films by scanning probe microscopy. Appl. Phys. Lett., 2005, 86(1): 012903-1-3. |
[43] | KOTOMIN E A, HEIFETS E, DORFMAN S, et al. Comparative study of polar perovskite surfaces. Surface Science, 2004, 566-568(1): 231-235. |
[44] | LAI B K, KORNEV L A, BELLAICHE L, et al. Phase diagrams of epitaxial BaTiO3 ultrathin films from first principles. Appl. Phys. Lett., 2005, 86(13): 132904-1-3. |
[45] | MUNKHOLM A, STREIFFER S K, RAMANA MURTY M V, et al. Antiferrodistortive reconstruction of the PbTiO3 (001) surface. Phys. Rev. Lett., 2001, 88(1): 0161010-1-4. |
[46] | BUNGARO C, RABE K M. Coexistence of antiferrodistortive and ferroelectric distortions at the PbTiO3 (001) surface. Phys. Rev. B, 2005, 71(3): 035420-1-9. |
[47] | KRETSCHMER R, BINDER K.Surface effects on phase transitions in ferroelectrics and dipolar magnets.Phys. Rev. B, 1979, 20(3): 1065-1076. |
[48] | UMENO Y, SHIMADA T, KITAMURA T, et al. Ab initio density functional theory study of strain effects on ferroelectricity at PbTiO3 surfaces. Phys. Rev. B, 2006, 74(17): 174111-1-9. |
[49] | BOUSQUET E, DAWBER M, STUCKI N, et al.Improper ferroelectricity in perovskite oxide artificial superlattices.Nature, 2008, 452(7188): 732-736. |
[50] | MEYER B, PADILLA J, VANDERBILT D.Theory of PbTiO3, BaTiO3, and SrTiO3 surfaces.Faraday Discussion, 1999, 114: 395-405. |
[51] | GU H, HU Y, YOU J, HU Z, et al. Characterization of singlecrystalline PbTiO3 nanowire growth via surfactant-free hydrothermal method. J. Appl. Phys., 2007, 101(2): 024319-1-7. |
[52] | URBAN J J, YUN W S, GU Q, et al.Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate.J. Am. Chem. Soc., 2002, 124(7): 1186-1187. |
[53] | YAMASHITA Y, MUKAI K, YOSHINOBU J, et al.Chemical nature of nanostructures of La0.6Sr0.4MnO3 on SrTiO3 (100).Surface Science, 2002, 514(1/2/3): 54-59. |
[54] | CHO G B, YAMAMOTO M, ENDO Y. Surface features of self-organized SrTiO3 (001) substrates inclined in [100] and [110] directions. Thin Solid Films, 2004, 464-465: 80-84. |
[55] | TAKAHASHI K, SUZUKI M, YOSHIMOTO M, et al.Growth behavior of c-axis-oriented epitaxial SrBi2Ta2O9 films on SrTiO3 substrates with atomic scale step structure.Jpn. J. Appl. Phys., 2006, 45(5): L138-L141. |
[56] | CHU M W, SZAFRANIAK I, SCHOLZ R, et al.Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites.Nature Materials, 2004, 3(2): 87-90. |
[57] | JEON J H, CHOI S K. Growth mode transition to pyramid from layer by layer of heteroepitaxial PbTiO3 islands on a (001) vicinal SrTiO3 substrate fabricated by hydrothermal epitaxy. Appl. Phys. Lett., 2007, 91(9): 091916-1-3. |
[58] | SHIMADA T, TOMODA S, KITAMURA T. Ab initio study of ferroelectricity in edged PbTiO3 nanowires under axial tension. Phys. Rev. B, 2009, 79(2): 024102-1-7. |
[59] | GENESTE G, BOUSQUET E, JUNQUERA J, et al. Finite-size effects in BaTiO3 nanowires. Appl. Phys. Lett., 2006, 88(11): 112906-1-3. |
[60] | PROSANDEEV S, PONOMAREVA I. Controlling toroidal moment by means of an inhomogeneous static field: An ab initio study. Phys. Rev. Lett., 2006, 96(23): 237601-1-4. |
[61] | PROSANDEEV S, PONOMAREVA I, NAUMOV I, et al. Original properties of dipole vortices in zero-dimensional ferrroelectrics. J. Phys.: Condens. Matter, 2008, 20(19): 193201-1-14. |
[62] | SCHILLING A, BYRNE D, GATALAN G, et al.Domains in ferroelectric nanodots.Nano Letter, 2009, 9(9): 3359-3364. |
[63] | STACHIOTTI M G, SEPLIARSKY M. Toroidal ferroelctricity in PbTiO3 nanoparticles. Phys. Rev. Lett., 2011, 106(13): 137601-1-4. |
[64] | WANG X, TOMODA S, SHIMADA T, et al. Local suppression of ferroelectricity at PbTiO3 surface steps: a density functional theory study. J. Phys.: Condens. Matter, 2012, 24(4): 045903-1-8. |
[65] | SHIMADA T, TOMODA S, KITAMURA T. Ab initio study of ferroelectric closure domains in ultrathin PbTiO3 films. Phys. Rev. B, 2010, 81(14): 144116-1-6. |
[66] | PILANIA G, RAMPRASAD R. Complex polarization ordering in PbTiO3 nanowires: a first-principles computational study. Phys. Rev. B, 2010, 82(15): 155442-1-8. |
[67] | PILANIA G, ALPAY S P, RAMPRASAD R. Ab initio study of ferroelectricity in BaTiO3 nanowires. Phys. Rev. B, 2009, 80(1): 014113-1-7. |
[68] | FU H, BELLAICHE L. Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett., 2003, 91(25): 257601-1-4. |
[69] | ZHU X H, LIU Z G.Size effects in perovskite ferroelectric nanostructures: current progress and future perspectives.Journal of Advanced Dielectrics, 2011, 1(3): 289-301. |
[70] | SHIN H J, CHOI J H, YANG H J, et al. Patterning of ferroelectric nanodot arrays using a silicon nitride shadow mask. Appl. Phys. Lett., 2005, 87(11): 113114-1-3. |
[71] | ZHONG W L, WANG Y G, ZHANG P L, et al.Phenomenological study of the size effect on phase transitions in ferroelectric particles.Phys. Rev. B, 1994, 50(2): 698-703. |
[72] | ZHONG W L, AI S T, JIANG B.Two critical size of barium titanate and lead titanate.Journal of Inorganic Materials, 2002, 17(5): 1009-1012. |
[73] | MOROZOVSKA A N, ELISEEV E A, GLINCHUK M D. Ferroelectricity enhancement in confined nanorods: direct variational method. Phys. Rev. B, 2006, 73(21): 214106-1-13. |
[74] | LIN S, LU T Q, JIN C Q, et al. Size effect on the dielectric properties of BaTiO3 nanoceramics in a modified Ginsburg-Landau-Devonshire thermodynamics theory. Phys. Rev. B, 2006, 74(13): 134115-1-5. |
[75] | WANG C L, XIN Y, WANG X S, et al.Size effects of ferroelectric particles described by the transverse Ising models.Phys. Rev. B, 2000, 62(17): 11423-11427. |
[76] | ERDEN E, SEMMELHACK H C, BOTTCHER R, et al.Study of the tetragonal-to-cubic phase transition in PbTiO3 nanopowders.J. Phys.: Condens. Matter, 2006, 18(15): 3861-3874. |
[77] | POLKING M J, HAN M G, YOURDKHANI A, et al.Ferroelectric order in individual nanometer-scale crystals.Nature Materials, 2012, 11(8): 700-709. |
[78] | SEDYKH P, MICHEL D, CHARNAYA E V, et al.Size effects in fine barium titanate particles.Ferroelectrics, 2010, 400(1): 135-143. |
[79] | SMITH M B, PAGE K, SIEGRIST T, et al.Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3.J. Am. Chem. Soc., 2008, 130(22): 6955-6963. |
[80] | WANG X H, DENG X Y, WEN H. Phase transition and high dielectric constant of bulk dense nano-grain barium titanate ceramic. Appl. Phys. Lett., 2006, 89(16): 162902-1-3. |
[81] | DENG X Y, LI D J, LI J B.Preparation of nanocrystalline BaTiO3 ceramics.Science in China Series E: Technological Sciences, 2009, 52(6): 1730-1734. |
[82] | XIAO C J, JIN C Q, WANG X H.Crystal structure and ferroelectricity of nanocrystalline barium titanate ceramics fabricated by the high pressure sintering.Journal of the Chinese Ceramic Society, 2008, 36(6): 748-750. |
[83] | MÜNCH I, HUBER J E. A hexadomain vortex in tetragonal ferroelectrics. Appl. Phys. Lett., 2009, 95(2): 022913-1-3. |
[84] | ONG L, SOH A K, LIU S Y, et al. Vortex structure transformation of BaTiO3 nanoparticles through the gradient function. J. Appl. Phys., 2009, 106(2): 024111-1-4. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[13] | 史艳磊, 孙聂枫, 徐成彦, 王书杰, 林朋, 马春雷, 徐森锋, 王维, 陈春梅, 付莉杰, 邵会民, 李晓岚, 王阳, 秦敬凯. 半密封直拉法生长6英寸磷化铟单晶热场研究[J]. 无机材料学报, 2023, 38(3): 335-342. |
[14] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[15] | 穆宏赫, 王鹏飞, 施宇峰, 张中晗, 武安华, 苏良碧. 热交换坩埚下降法制备大尺寸氟化铈晶体的热场设计与优化[J]. 无机材料学报, 2023, 38(3): 288-295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||