无机材料学报 ›› 2015, Vol. 30 ›› Issue (4): 413-419.DOI: 10.15541/jim20140446
卢 青, 华罗光, 陈亦琳, 高碧芬, 林碧洲
收稿日期:
2014-09-02
修回日期:
2014-10-20
出版日期:
2015-04-29
网络出版日期:
2015-03-26
作者简介:
卢 青(1988–), 男, 硕士研究生. E-mail: 316770607@qq.com
基金资助:
LU Qing, HUA Luo-Guang, CHEN Yi-Lin, GAO Bi-Fen, LIN Bi-Zhou
Received:
2014-09-02
Revised:
2014-10-20
Published:
2015-04-29
Online:
2015-03-26
About author:
LU Qing. E-mail: 316770607@qq.com
Supported by:
摘要:
采用乙二醇溶剂热法原位制备氧缺陷Bi2WO6-x催化剂, 利用XRD、SEM、N2吸附-脱附、XPS、ESR、UV-Vis DRS、PL及电化学方法对样品的理化性能进行了表征, 考察了样品在可见光下(λ > 400 nm)对气相苯的光催化降解性能。结果表明: 乙二醇溶剂热法制备的催化剂具有较大比表面积, 形成了Bi-Ov和W-Ov氧缺陷中心; 缺陷的生成改变了催化剂的能带结构, 缩小其光响应带隙宽度, 并有效抑制了光生电子-空穴对的复合, 催化剂的活性增强。Bi2WO6-x降解苯的转化率和矿化率分别为52.5%和80.6%, 是Bi2WO6的1.72倍和1.84倍。
中图分类号:
卢 青, 华罗光, 陈亦琳, 高碧芬, 林碧洲. 氧缺陷Bi2WO6-x可见光催化剂的制备和性能[J]. 无机材料学报, 2015, 30(4): 413-419.
LU Qing, HUA Luo-Guang, CHEN Yi-Lin, GAO Bi-Fen, LIN Bi-Zhou. Preparation and Property of Oxygen-deficient Bi2WO6-x Photocatalyst Active in Visible Light[J]. Journal of Inorganic Materials, 2015, 30(4): 413-419.
Sample | Bi4f | W4f | O1s | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Position /eV | Area | FWHM /eV | Assignment | Position /eV | Area | FWHM /eV | Assignment | Position /eV | Area | FWHM /eV | Assignment | |
BWO | 159.00 | 295327 | 1.09 | Bi2WO6, 4f7/2 | 35.25 | 56766 | 0.96 | Bi2WO6, 4f7/2 | 530.09 | 46363 | 1.24 | Olattice, Bi-Bi |
164.30 | 221495 | 1.12 | Bi2WO6, 4f5/2 | 37.40 | 42574 | 0.94 | Bi2WO6, 4f5/2 | 530.67 | 82916 | 1.57 | Olattice, W-W | |
532.20 | 14983 | 1.65 | OH, O2 | |||||||||
BWO-v | 158.85 | 180241 | 1.18 | Bi2WO6, 4f7/2 | 35.00 | 34737 | 1.03 | Bi2WO6, 4f7/2 | 531.11 | 24118 | 1.22 | Olattice, Bi-Bi |
164.15 | 135181 | 1.21 | Bi2WO6, 4f5/2 | 37.15 | 26053 | 1.00 | Bi2WO6, 4f5/2 | 530.69 | 47240 | 1.58 | Olattice, W-W | |
532.09 | 19536 | 1.87 | OH, O2 |
表1 催化剂的XPS数据拟合分析
Table 1 XPS fitting data of catalysts
Sample | Bi4f | W4f | O1s | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Position /eV | Area | FWHM /eV | Assignment | Position /eV | Area | FWHM /eV | Assignment | Position /eV | Area | FWHM /eV | Assignment | |
BWO | 159.00 | 295327 | 1.09 | Bi2WO6, 4f7/2 | 35.25 | 56766 | 0.96 | Bi2WO6, 4f7/2 | 530.09 | 46363 | 1.24 | Olattice, Bi-Bi |
164.30 | 221495 | 1.12 | Bi2WO6, 4f5/2 | 37.40 | 42574 | 0.94 | Bi2WO6, 4f5/2 | 530.67 | 82916 | 1.57 | Olattice, W-W | |
532.20 | 14983 | 1.65 | OH, O2 | |||||||||
BWO-v | 158.85 | 180241 | 1.18 | Bi2WO6, 4f7/2 | 35.00 | 34737 | 1.03 | Bi2WO6, 4f7/2 | 531.11 | 24118 | 1.22 | Olattice, Bi-Bi |
164.15 | 135181 | 1.21 | Bi2WO6, 4f5/2 | 37.15 | 26053 | 1.00 | Bi2WO6, 4f5/2 | 530.69 | 47240 | 1.58 | Olattice, W-W | |
532.09 | 19536 | 1.87 | OH, O2 |
Sample | Olattice, Bi : Bi | Olattice, W : W | Oad : Ototal |
---|---|---|---|
Bi2WO6 | 0.94 | 3.77 | 0.10 |
Bi2WO6-x | 0.89 | 3.51 | 0.21 |
表2 催化剂的O1s XPS分析结果
Table 2 Results of O1s XPS analysis of catalysts
Sample | Olattice, Bi : Bi | Olattice, W : W | Oad : Ototal |
---|---|---|---|
Bi2WO6 | 0.94 | 3.77 | 0.10 |
Bi2WO6-x | 0.89 | 3.51 | 0.21 |
图8 催化剂光催化降解苯的活性 (λ > 400 nm)
Fig. 8 Photocatalytic conversion and mineralization of benzene over catalysts under visible light irradiation (λ > 400 nm)
[1] | SUN J, LI X H, LIU S X.The combined adsorption-photocatalysis for the removal of indoor volatile organic compounds.Prog. Chem., 2009, 21(10): 2067-2076. |
[2] | LONG B H, HUANG J H, WANG X C.Photocatalytic degradation of benzene in gas phase by nanostructured BiPO4 catalysts.Prog. Nat. Sci.: Mater. Int., 2012, 22(6): 644-653. |
[3] | LIN T, CHEN Y Q, WANG H Y, et al.Photocatalytic degradation of gaseous benzene over TiO2/BixTiyOz: A kinetic model and degradation mechanism. Chin. J. Catal., 2009, 30(9): 873-878. |
[4] | DU S Q, YUAN Y F, TU W X.Microwave-hydrothermal synthesis and photocatalytic activity of Zn2GeO4 nanoribbons.Acta Phys. -Chim. Sin., 2013, 29(9): 2062-2068. |
[5] | CHEN Y L, CAO X X, KUANG J D, et al.The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres.Catal. Commun., 2010, 12(4): 247-250. |
[6] | ZHENG L, DENG J N, WANG L L, et al.Curling-like Bi2WO6 microdiscs with lamellar structure for enhanced gas-sensing properties.Sens. Actuators B: Chem., 2013, 182: 217-220. |
[7] | GUAN M Y, HE X H, SHANG T M, et al.Hydrothermal synthesis of ultrathin Bi2MO6 (M = W, Mo) nanoplates as new host substances for red-emitting europium ion.Prog. Nat. Sci.: Mater. Int., 2012, 22(4): 334-340. |
[8] | ZHANG L S, WANG H L, CHEN Z G, et al.Bi2WO6 micro/ nano-structures: synthesis, modifications and visible-light driven photocatalytic applications.Appl. Catal. B: Environ., 2011, 106: 1-13. |
[9] | FU H B, ZHANG L W, YAO W Q, et al.Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process.Appl. Catal. B: Environ., 2006, 66: 100-110. |
[10] | LIU S J, HOU F F, ZHENG S L, et al.One-dimensional hierarchical Bi2WO6 hollow tubes with porous walls: synthesis and photocatalytic property.CrystEngComm., 2013, 15: 4124-4130. |
[11] | YAO F, YANG Q Q, YIN C, et al.Biomimetic Bi2WO6 with hierarchi-cal structures from butterfly wings for visible light absorption.Mater. Lett. 2012, 77: 21-24. |
[12] | SHANG M, WANG W Z, REN J, et al.A practical visible-light- driven Bi2WO6 nanofibrous mat prepared by electrospinning.J. Mater. Chem., 2009, 19(34): 6213-6218. |
[13] | GAO E P, WANG W Z, SHANG M, et al.Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite.Phys. Chem. Chem. Phys., 2011, 13: 2887-2893. |
[14] | WANG Y J, BAI X J, PAN C S, et al.Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4.J. Mater. Chem., 2012, 22: 11568-11573. |
[15] | GE L, LIU J.Efficient visible light-induced photocatalytic degradation of methyl orange by QDs sensitized CdS-Bi2WO6.Appl. Catal. B: Environ., 2011, 105: 289-297. |
[16] | SONG X C, ZHENG Y F, MA R, et al.Photocatalytic activities of Mo-doped Bi2WO6 three-dimensional hierarchical Microspheres.J. Hazard. Mater., 2011, 192: 186-191. |
[17] | SHI R, HUANG G L, LIN J, et al.Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution.J. Phys. Chem. C, 2009, 113: 19633-19638. |
[18] | FU Y, CHANG C, CHEN P, et al. Enhanced photocatalytic performance of boron doped Bi2WO6 nanosheets under simulated solar light irradiation. J. Hazard. Mater., 2013, 254-255: 185-192. |
[19] | LV Y H, YAO W Q, MA X G, et al.The surface oxygen vacancy induced visible activity and enhanced UV activity of a ZnO1-x photocatalyst.Catal. Sci. Technol., 2013, 3: 3136-3146. |
[20] | LV Y H, LIU Y F, ZHU Y Y, et al.Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod.J. Mater. Chem. A, 2014, 2: 1174-1182. |
[21] | PAN X Y, YANG M Q, FU X Z, et al.Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications.Nanoscale, 2013, 5: 3601-3614. |
[22] | SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure & Appl. Chem., 1985, 57: 603-619. |
[23] | ZHANG Z J, WANG W Z, GAO E P, et al.Enhanced photocatalytic activity of Bi2WO6 with oxygen vacancies by zirconium doping.J. Hazard. Mater., 2011, 196: 255-262. |
[24] | WANG D J, ZHEN Y Z, XUE G L, et al.Synthesis of mesoporous Bi2WO6 architectures and their gas sensitivity to ethanol.J. Mater. Chem. C, 2013, 1: 4153-4162. |
[25] | ZHOU Y, TIAN Z P, ZHAO Z Y, et al.high-sield Synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light.ACS Appl. Mater. Interfaces, 2011, 3: 3594-3601. |
[26] | JIANG H Q, WANG P, XIAN H Z.Preparation and photocatalytic activities of low amount Yb3+-doped TiO2 composite nano-powders.Acta Chim. Sinica, 2006, 64(2): 145-149. |
[27] | SERWICKA E.ESR study on the interaction of water vapour with polycrystalline TiO2 under illumination.Colloids Surf., 1985, 13: 287-293. |
[28] | HIRAKAWA T, NOSAKA Y.Properties of O2•- and •OH formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions.Langmuir, 2002, 18: 3247-3254. |
[29] | SUN S M, WANG W Z, ZHANG L.Efficient contaminant removal by Bi2WO6 films with nanoleaflike structures through a photoelectrocatalytic process.J. Phys. Chem. C, 2012, 116: 19413-19418. |
[30] | YANG M, HUANG Q, JIN X Q.ZnGaNO solid solution-C3N4 composite for improved visible light photocatalytic performance.Mater. Sci. Eng. B, 2012, 177: 600-605. |
[31] | ABZOVIC N D, MIRENGHI L, JANKOVIC I A, et al.Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions.Nanoscale Res. Lett., 2009, 4: 518-525. |
[32] | YE L Q, DENG K J, XU F, et al.Increasing visible-light absorption for photocatalysis with black BiOCl.Phys. Chem. Chem. Phys., 2012, 14: 82-85. |
[33] | CAO X X, CHEN Y L, LIN B Z, et al.Study of the photocatalytic performance of oxygen-deficient TiO2 active in visible light.J. Inorg. Mater., 2012, 27(12): 1301-1305. |
[1] | 蔡苗, 陈子航, 曾实, 杜江慧, 熊娟. CuS纳米片修饰Bi5O7I复合材料用于光催化还原Cr(VI)水溶液[J]. 无机材料学报, 2021, 36(6): 665-672. |
[2] | 董正明, 李修, 陈晨, 曹明贺, 易志国. NBT-BNT陶瓷的光致形变性能[J]. 无机材料学报, 2021, 36(3): 277-282. |
[3] | 李翠霞, 孙会珍, 金海泽, 史晓, 李文生, 孔文慧. 3D多级孔rGO/TiO2复合材料的构筑及其光催化性能研究[J]. 无机材料学报, 2021, 36(10): 1039-1046. |
[4] | 张塞, 邹英桐, 陈中山, 李冰峰, 顾鹏程, 文涛. 可见光驱动RGO/g-C3N4活化过硫酸盐降解水中双酚A[J]. 无机材料学报, 2020, 35(3): 329-336. |
[5] | 魏鑫, 卢占会, 王路平, 方明. 可见光下Bi2WO6纳米片高效光降解四环素的机理研究[J]. 无机材料学报, 2020, 35(3): 324-328. |
[6] | 李志锋, 谭杰, 杨晓飞, 蔺祖弘, 郇正来, 张婷婷. 高暴露(001)面BiOBr/Ti3C2复合光催化剂的制备及其可见光催化性能[J]. 无机材料学报, 2020, 35(11): 1247-1254. |
[7] | 魏居孟, 吕强, 王奔驰, 潘家乐, 叶祥桔, 宋常春. 高可见光催化活性立方体浮雕状Ag3PO4的合成[J]. 无机材料学报, 2019, 34(7): 786-790. |
[8] | 李纳, 刘斌, 施佼佼, 薛艳艳, 赵衡煜, 施张丽, 侯文涛, 徐晓东, 徐军. 可见光波段稀土激光晶体的研究进展[J]. 无机材料学报, 2019, 34(6): 573-589. |
[9] | 柯剑煌, 谢凯, 韩喻, 孙巍巍, 罗世强, 刘锦锋. 基于不同共溶剂体系对于高电压正极材料LiCoPO4的形貌控制[J]. 无机材料学报, 2019, 34(6): 618-624. |
[10] | 隋丽丽,王润,赵丹,申书昌,孙立,徐英明,程晓丽,霍丽华. 多级结构α-MoO3空心微球的构筑及其对有机染料的吸附性能[J]. 无机材料学报, 2019, 34(2): 193-200. |
[11] | 张翊青, 刘梨, 张淑娟, 万正睿, 刘红英, 周立群. NH2-UIO-66负载RuCuMo纳米催化剂的制备及其催化产氢[J]. 无机材料学报, 2019, 34(12): 1316-1324. |
[12] | 李晓萍, 李跃军, 曹铁平, 孙大伟, 王霞, 席啸天. 简易合成Bi/Bi2MoO6/TiO2复合纳米纤维及其增强的可见光催化性能[J]. 无机材料学报, 2019, 34(11): 1193-1199. |
[13] | 王家虎, 王文馨, 杜鹏, 胡芳东, 姜晓蕾, 杨剑. Na3V2(PO4)2F3@V2O5-x复合材料的制备及储钠性能研究[J]. 无机材料学报, 2019, 34(10): 1097-1102. |
[14] | 柯银环, 曾敏, 姜宏, 熊春荣. N掺杂TiO2纳米纤维高可见光催化CO2合成甲醇[J]. 无机材料学报, 2018, 33(8): 839-844. |
[15] | 李健, 张刚华, 范立坤, 黄国全, 高志鹏, 曾涛. 不同pH下KBiFe2O5可见光催化性能研究[J]. 无机材料学报, 2018, 33(7): 805-810. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||