[1] |
NAKATA K, FUJISHIMA A.TiO2 photocatalysis: design and applications.Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2012, 13(3):169-189.
|
[2] |
MUNEER M, BAHNEMANN D.Semiconductor-mediated photocatalyzed degradation of two selected pesticide derivatives, terbacil and 2,4,5-tribromoimidazole, in aqueous suspension.Applied Catalysis B-Environmental, 2002, 36(2):95-111.
|
[3] |
ZHANG QING-HONG.Progress on TiO2-based nanomaterials and its utilization in the clean energy technology.Journal of Inorganic Materials, 2012, 27(1):1-10.
|
[4] |
MACWAN D P, DAVE P N, CHATURVEDI S.A review on nano-TiO2 Sol-Gel type syntheses and its applications.Journal of Materials Science, 2011, 46(11):3669-3686.
|
[5] |
AKURATI K K, VITAL A, FORTUNATO G, et al.Flame synthesis of TiO2 nanoparticles with high photocatalytic activity.Solid State Sciences, 2007, 9(3/4):247-257.
|
[6] |
LI J G, KAMIYAMA H, WANG X H, et al.TiO2 nanopowders via radio-frequency thermal plasma oxidation of organic liquid precursors: synthesis and characterization.Journal of the European Ceramic Society, 2006, 26(4):423-428.
|
[7] |
NIE LH, Shi C, Xu Y, et al.Atmospheric cold plasmas for synthesizing nanocrystalline anatase TiO2 using dielectric barrier discharges.Plasma Processes and Polymers, 2007, 4(5):574-582.
|
[8] |
LIU S X, LI X S, ZHU X B, et al.Gliding arc plasma synthesis of crystalline TiO2 nanopowders with high photocatalytic activity.Plasma Chemistry and Plasma Processing, 2013, 33(5):827-838.
|
[9] |
SPURR RA, MYERS H.Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer.Analytical Chemistry, 1957, 29(5):760-762.
|
[10] |
DENG XIAO-YAN, CUI ZUO-LIN, DU FANG-LIN, et al.Thermal analysis characterization of nanosized TiO2. Journal of Inorganic Materials, 2001, 16(6):1089-1093.
|
[11] |
PORTER J F, LI Y G, CHAN C K.The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2.Journal of Materials Science, 1999, 34(7): 1523-1531.
|
[12] |
QI F, MOISEEV A, DEUBENER J, et al.Thermostable photocatalytically active TiO2 anatase nanoparticles.Journal of Nanoparticle Research, 2011, 13(3):1325-1334.
|
[13] |
ZHANG H Z, BANFIELD J F.New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles.American Mineralogist, 1999, 84(4):528-535.
|
[14] |
LEE G W, CHOI S M.Thermal stability of heat-treated flame- synthesized anatase TiO2 nanoparticles.Journal of Materials Science, 2008, 43(2):715-720.
|
[15] |
果世驹. 粉末烧结理论. 北京: 冶金工业出版社, 1998:23-33.
|
[16] |
ZACHARIAH A, BAIJU KV, SHUKLA S, et al.Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via Sol-Gel solvent mixing and calcination.Journal of Physical Chemistry C, 2008, 112(30): 11345-11356.
|
[17] |
OHNO T, TOKIEDA K, HIGASHIDA S, et al.Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene.Applied Catalysis A-General, 2003, 244(2): 383-391.
|
[18] |
NAIR R G, PAUL S, SAMDARSHI S K.High UV/visible light activity of mixed phase titania: a generic mechanism.Solar Energy Materials and Solar Cells, 2011, 95(7): 1901-1907.
|
[19] |
CARNEIRO J T, SAVENIJE T J, MOULIJN J A, et al.How phase composition influences optoelectronic and photocatalytic properties of TiO2.Journal of Physical Chemistry C, 2011, 115(5): 2211-2217.
|
[20] |
BAKARDJIEVA S, SUBRT J, STENGL V, et al.Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase.Applied Catalysis B-Environmental, 2005, 58(3/4):193-202.
|
[21] |
KHO YK, IWASE A, TEOH WY, et al.Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile.Journal of Physical Chemistry C, 2010, 114(6): 2821-2829.
|
[22] |
SU R, BECHSTEIN R, SO L, et al.How the anatase-to-rutile ratio influences the photoreactivity of TiO2.Journal of Physical Chemistry C, 2011, 115(49):24287-24292.
|
[23] |
RIEGEL G, BOLTON JR.Photocatalytic efficiency variability in TiO2 particles.Journal of Physical Chemistry, 1995, 99(12): 4215-4224.
|
[24] |
BICKLEY R I, GONZALEZCARRENO T, LEES J S, et al.A structural investigation of titanium-dioxide photocatalysts.Journal of Solid State Chemistry, 1991, 92(1):178-190.
|
[25] |
KAWAHARA T, KONISHI Y, TADA H, et al.A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity.Angewandte Chemie-International Edition, 2002, 114(15): 2935-2937.
|
[26] |
KOMAGUCHI K, NAKANO H, ARAKI A, et al.Photoinduced electron transfer from anatase to rutile in partially reduced TiO2 (P-25) nanoparticles: an ESR study.Chemical Physics Letters, 2006, 428(4/6):338-342.
|
[27] |
YAN M C, CHEN F, ZHANG J L, et al.Preparation of controllable crystalline titania and study on the photocatalytic properties.Journal of Physical Chemistry B, 2005, 109(18): 8673-8678.
|
[28] |
HURUM D C, AGRIOS A G, GRAY K A, et al.Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR.Journal of Physical Chemistry B, 2003, 107(19): 4545-4549.
|