[1] |
HOSONO H, ABE Y.Occurrence of superoxide radical ion in crystalline calcium aluminate 12CaO·7Al2O3 prepared via solid- state reactions.Inorg. Chem., 1987, 26(8): 1192-1195.
|
[2] |
JEEVARATNAM J, GLASSER F P, GLASSER L S.Anion substitution and structure of 12CaO·7A12O3.J. Am. Ceram. Soc., 1964, 47(2): 105-106.
|
[3] |
LI J, HUANG F, WANG L, et al.High density hydroxyl anions in a microporous crystal: [Ca24Al28O64]4+·4(OH-).Chem. Mater., 2005, 17: 2771-2774.
|
[4] |
HAYASHI K, HIRANO M, MATSUISHI S, et al.J. Microporous crystal 12CaO·7Al2O3 encaging abundant O- radicals.J. Am. Chem. Soc., 2002, 124(5): 738-739.
|
[5] |
HAYASHI K, MATSUISHI S, KAMIYA T, et al.Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor.Nature, 2002, 419: 462-465.
|
[6] |
MIYAKAWA M, HAYASHI K, HIRANO M, et al.Fabtication of highly conductive 12CaO·7Al2O3 thin films encaging hydride ions by proton implantation.Adv. Mater., 2003, 15(13): 1100-1103.
|
[7] |
MATSUISHI S, TODA Y, MIYAKAWA M, et al.High-density electron anions in a nanoporous single crystal.Science, 2003, 301: 626-629.
|
[8] |
TODA Y, MATSUISHI S, HAYASHI K, et al.Field emission of electron anions clathrated in subnanometer-sized cages in [Ca24Al28O64]4+·4(e-).Adv. Mater., 2004, 16(8): 685-689.
|
[9] |
LI Z, YANG J, HOU J G, et al.Is mayenite without clathrated oxygen an inorganic electride.Angew. Chem., Int. Ed., 2004, 43: 6479-6482.
|
[10] |
SUSHKO P V, SHLUGER A L, HIRANO M, et al.From insulator to electride: a theoretical model of nanoporous oxide 12CaO·7Al2O3.J. Am. Chem. Soc., 2007, 129(4): 942-951.
|
[11] |
TODA Y, YANAGI H, IKENAGA E, et al.Work function of a room-temperature, stable electride [Ca24Al28O64]4+·4(e-).Adv. Mater., 2007, 19: 3564-3569.
|
[12] |
MATSUISHI S, NOMURA T, HIRANO M, et al.Direct synthesis of powdery inorganic electride [Ca24Al28O64]4+·4(e-) and determination of oxygen stoichiometry.Chem. Mater., 2009, 21: 2589-2591.
|
[13] |
KURASHIGE K, TODA Y, MATSTUISHI S, et al.Czochralski growth of 12CaO·7Al2O3 crystals.Cryst. Growth Design, 2006, 6(7): 1602-1605.
|
[14] |
ZAHEDI M, RAY A K, BARRATT D S.Preparation and crystallization of Sol-Gel C12A7 thin films.J. Phys. D: Appl. Phys., 2008, 41: 035404-035408.
|
[15] |
NAKANISHI K, TANAKA N.Sol-Gel with phase separation hierarchically porous materials optimized for high-performance liquid chromatography separations.Acc. Chem. Res., 2007, 40(9): 863-873.
|
[16] |
KITADA A, HASEGAWA G, KOBAYASHI Y, et al.Selective preparation of macroporous monoliths of conductive titanium oxides TinO2n-1 (n = 2, 3, 4, 6).J. Am. Chem. Soc., 2012, 134: 10894-10898.
|
[17] |
NAKANISHI K.Pore structure control of silica gels based on phase separation.J. Porous Mater., 1997, 4(2): 67-112.
|
[18] |
HASEGAWA G, KANAMORI K, NAKANISHI K, et al.Facile preparation of hierarchically porous TiO2 monoliths.J. Am. Ceram. Soc., 2010, 93(10): 3110-3115.
|
[19] |
KONISHI J, FUJITA K, OIWA S, et al.Crystalline ZrO2 monoliths with well-defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived Sol-Gel process accompanied by phase separation and the solvothermal process.Chem. Mater., 2008, 20(6): 2165-2173.
|
[20] |
GASH A E, TILLOTSON T M, SATCHER J H, et al.Use of epoxides in the Sol-Gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts.Chem. Mater., 2001, 13: 999-1007.
|
[21] |
GASH A E, SATCHER J H, SIMPSON R L, et al.Strong akaganeite aerogel monoliths using epoxides: synthesis and characterization.Chem. Mater., 2003, 15: 3268-3275.
|
[22] |
TOKUDOME Y, FUJITA K, NAKANISHI K, et al.Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the Sol-Gel process accompanied by phase separation.Chem. Mater., 2007, 19(14): 3393-3398.
|
[23] |
HASEGAWA G, ISHIHARA Y, KANAMORI K, et al.Facile preparation of monolithic LiFePO4/Carbon Composites with well-defined macropores for a lithium-ion battery.Chem. Mater., 2011, 23: 5208-5216.
|
[24] |
KIDO Y, NAKANISHI K, MIYASAKA A, et al.Synthesis of monolithic hierarchically porous iron-based xerogels from iron(III) salts via an epoxid-mediated Sol-Gel process.Chem. Mater., 2012, 24: 2071-2077.
|
[25] |
GUO X Z, LI W Y, ZHU Y, et al.Macroporous SiO2 monoliths prepared via Sol-Gel process accompanied by phase separation.Acta Phys.-Chim. Sin., 2013, 29(3): 646-652.
|
[26] |
GUO X Z, LÜLIN Y X, YANG H. Preparation of macroporous zirconia monoliths via Sol-Gel process accompanied by phase separation.J. Chin. Ceram. Soc., 2014, 42(1): 6-10.
|
[27] |
GUO X Z, LI W Y, NAKANISHI K, et al.Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via the Sol-Gel process accompanied by phase separation. J. Eur. Ceram. Soc., 2013, 33(10): 1967-1974.
|
[28] |
GUO X Z, NAKANISHI K, KANAMORI K, et al.Preparation of macroporous cordierite monoliths via the Sol-Gel process accompanied by phase separation.J. Eur. Ceram. Soc., 2014, 34: 817-823.
|
[29] |
XU Z J, GAN L H, PANG Y C, et al.Preparation of Al2O3 bulk aerogels by non-supercritical fluid drying.Acta Phys. -Chim. Sin., 2005, 21(2): 221-224.
|
[30] |
SAEKI S, KUWAHARA N, NAKATA M, et al.Upper and lower critical solution temperatures in poly (ethylene glycol) solutions.Polymer, 1976, 17(8): 685-689.
|
[31] |
SUN J Q, GONG L, SHEN J, et al.Sol-Gel preparation of porous C12A7-Cl- crystals.Acta Phys.-Chim. Sin., 2010, 26(3): 795-798.
|