[1] |
LEE J S, TAI K S, CAO R, et al.Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater., 2011, 1(1): 34-50.
|
[2] |
GAO X P, YANG H X.Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci., 2010, 3(2): 174-189.
|
[3] |
ZHAO Y J, FENG H L, ZHAO C S, et al.Progress of research on the Li-rich cathode materials xLi2MnO3·(1-x)LiMO2 (M=Co, Fe, Ni1/2Mn1/2…) for Li-ion batteries. Journal of Inorganic Materials, 2011, 26(7): 673-679.
|
[4] |
LU Z, MACNEIL D D, DAHN J R.Layered cathode materials Li[NixLi1/3-2x/3Mn2/3-x/3]O2 for lithium-ion batteries. Electrochem. Solid-State Lett., 2001, 4(11): A191-A194.
|
[5] |
NGALA J K, CHEMOVA N A, WHITTINGHAM M S, et al.The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound. J. Mater. Chem., 2004, 14(2): 214-220.
|
[6] |
WU Y, MANTHIRAM A.Effect of surface modifications on the layered solid solution cathodes (1-z)Li[Li1/3Mn2/3]O2-(z)Li[Mn0.5-yNi0.5-yCo2y]O2. Solid State Ionics, 2009, 180(1): 50-56.
|
[7] |
WANG Q Y, LIU J, MURUGAN A V, et al.High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability. J. Mater. Chem., 2009, 19(10): 4965-4972.
|
[8] |
ZHANG WEN-HUA,HE WEI, PEI FENG, et al. Improved electrochemical properties of Al3+-doped 0.5Li2MnO3-0.5LiCo1/3Ni1/3Mn1/3O2 cathode for lithium ion batteries. Journal of Inorganic Materials, 2013, 28(11): 1261-1264.
|
[9] |
JIAO L F, ZHANG M, YUAN H T, et al.Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2 Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J. Power Sources, 2007, 167(1): 178-184.
|
[10] |
ZHANG H Z, QIAO Q Q, LI G R, et al.PO43− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. J. Mater. Chem. A, 2014, 2(20): 7454-7460.
|
[11] |
POIZOT P, LARUELLE S, GRUGEON S, et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499.
|
[12] |
ZHANG Qian, LIU Wei-Wei, FANG Guo-Qing, et al.Structural and electrochemical performances of Li1+2xMn0.3+xNi0.3-3xCr0.4O2 synthesized by spray-dry method. Journal of Inorganic Materials, 2013, 28(06): 616-622.
|
[13] |
ZHAO Y, ZHAO C, FENG H, et al.Enhanced electrochemical performance of LiNi0.2Li0.2Mn0.6O2 modified by manganese oxide coating for lithium-ion batteries. Electrochem. Solid-State Lett., 2011, 14(1): A1.
|
[14] |
WU F, LI N, SU Y, et al.Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?J. Mater. Chem., 2012, 22: 1489-1497.
|
[15] |
HE W, QIAN J F, AI X P.Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. RSC Adv., 2012, 2: 3423-3429.
|
[16] |
MLADENOV M, STOYANOVA R, ZHECHEVA E, et al.Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes. Electrochem. Commun., 2001, 3(8): 410-416.
|
[17] |
CHO M Y, ROH K C, PARK S M, et al.Effects of CeO2 coating uniformity on high temperature cycle life performance of LiMn2O4. Mater. Lett., 2011, 65: 2011-2014.
|
[18] |
LI G R, FENG X, DING Y, et al.AlF3-coated Li(Li0.17Ni0.25Mn0.58) O2 as cathode material for Li-ion batteries. Electrochimica Acta, 2012, 78: 308-315.
|
[19] |
WU Y, MURUGAN A V, MANTHIRAM A.Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. J. Electrochem. Soc., 2008, 155(10): A635-A641.
|
[20] |
KAN S H, THACKERAY M M.Enhancing the rate capability of high capacity xLi2MnO3·(1-x)LiMO2(M=Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment. Electrochem. Commun., 2009, 11(4): 748-751.
|
[21] |
LEE S H, KOO B K, KIM J C, et al.Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries. J. Power Sources, 2008, 184(1): 276-283.
|
[22] |
QIAO Q Q, ZHANG H Z, LI G R, et al.Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as the cathode for lithium-ion batteries. J. Mater. Chem. A, 2013, 1(17): 5262-5268.
|
[23] |
ZHANG H Z, QIAO Q Q, LI G R, et al.Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. J. Mater. Chem., 2012, 22(26): 13104-13109.
|
[24] |
ZHANG Z R, LI J, YANG Y.The effects of decomposition products of electrolytes on the thermal stability of bare and TiO2-coated delithiated Li1−xNi0.8Co0.2O2 cathode materials. Electrochimica Acta. 2006, 52: 1442-1450.
|
[25] |
ZHENG J M, LI J, ZHANG Z R, et al.The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics, 2008, 179(27-32): 1794-1799.
|
[26] |
YIN S, FUJISHIRO Y, WU J H, et al.Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions. J. Mater. Process Tech., 2003, 137: 45-48.
|
[27] |
YANG D J, LIU H W, ZHENG Z F, et al.An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc., 2009, 131(49): 17885-17893.
|
[28] |
JANOTTI A, VARLEY J B.Hybrid functional studies of the oxygen vacancy in TiO2,Phys. Rev. 2010, 81(8): 085212.
|
[29] |
PAN X Y, YANG M Q.Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale, 2013, 5: 3601-3614.
|
[30] |
ZHANG Z R, LI J, YANG Y.The effects of decomposition products of electrolytes on the thermal stability of bare and TiO2-coated delithiated Li1−xNi0.8Co0.2O2 cathode materials. Electrochimica Acta, 2006, 52(4): 1442-1450.
|
[31] |
WANG J, YUAN G X, ZHANG M H, et al.The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6 O2.25+x/2(0.1≤x≤0.7) cathode materials. Electrochimica Acta, 2012, 66: 61-66.
|
[32] |
MACNEIL D D, LU Z, DAHN J R.Structure and electrochemistry of Li[NixCo1-2xMnx]O2(0<x<1). J. Electrochem. Soc., 2002, 149(10): A1332-A1336.
|
[33] |
ARMSTRONG A R, HOLZAPEFEL M, NOVAK P, et al.Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li(Ni0.2Li0.2Mn0.6)O2. J. Am. Chem. Soc., 2006, 26(128): 8694-8698.
|