[1] |
WANG W, MCCOOL G, KAPUR N, et al. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd) Mn2O5 for NO oxidation in diesel exhaust. Science, 2012, 337(6096): 832-835.
|
[2] |
TURNBULL M M, LANDEE C P. Porous materials with a difference. Science, 2002, 298(5599): 1723-1724.
|
[3] |
LATELLA B A, HENKEL L, MEHRTENS E G. Permeability and high temperature strength of porous mullite-alumina ceramics for hot gas filtration. Journal of Materials Science, 2006, 41(2): 423-430.
|
[4] |
STUDART A R, GONZENBACH U T, TERVOORT E, et al. Processing routes to macroporous ceramics: a review. Journal of the American Ceramic Society, 2006, 89(6): 1771-1789.
|
[5] |
CHOU K S, LEE T K, LIU F J. Sensing mechanism of a porous ceramic as humidity sensor. Sensors and Actuators B: Chemical, 1999, 56(1): 106-111.
|
[6] |
RONCARI E, GALASSI C, BASSARELLO C. Mullite suspensions for reticulate ceramic preparation. Journal of the American Ceramic Society, 2000, 83(12): 2993-2998.
|
[7] |
SHE J H, OHJI T. Porous mullite ceramics with high strength. Journal of Materials Science Letters, 2002, 21(23): 1833-1834.
|
[8] |
GUO X, LI W, NAKANISHI K, et al. Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via the Sol-Gel process accompanied by phase separation. Journal of the European Ceramic Society, 2013.
|
[9] |
PIVINSKII Y E, BEVZ V A, MAKARENKOVA R G. Production and properties of mullite foam ceramic. Refractories and Industrial Ceramics, 1980, 21(5): 269-272.
|
[10] |
GARCIA E, OSENDI M I, MIRANZO P. Porous mullite templated from hard mullite beads. Journal of the European Ceramic Society, 2011, 31(8): 1397-1403.
|
[11] |
SUN B, LI X, LI C. Preparation of porous mullite composite by microwave sintering. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2012, 27(6): 1125-1127.
|
[12] |
BAI J. Fabrication and properties of porous mullite ceramics from calcined carbonaceous kaolin and α-Al2O3. Ceramics International, 2010, 36(2): 673-678.
|
[13] |
OKADA K, SHIMIZU M, ISOBE T, et al. Characteristics of microbubbles generated by porous mullite ceramics prepared by an extrusion method using organic fibers as the pore former. Journal of the European Ceramic Society, 2010, 30(6): 1245-1251.
|
[14] |
POPA C, OKAYASU Y, KATSUMATA K, et al. Capillary rise properties of porous mullite ceramics prepared by an extrusion method with various diameters of fiber pore formers. Journal of Materials Science, 2013, 48(2): 941-947.
|
[15] |
KOO J, KLEINSTREUER C. A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 2004, 6(6): 577-588.
|
[16] |
TICHÁ G, PABST W, SMITH D S. Predictive model for the thermal conductivity of porous materials with matrix-inclusion type microstructure. Journal of Materials Science, 2005, 40(18): 5045-5047.
|
[17] |
LEVY F L. A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. International Journal of Refrigeration, 1981, 4(4): 223-225.
|
[18] |
CARSON J K. Review of effective thermal conductivity models for foods. International Journal of Refrigeration, 2006, 29(6): 958-967.
|
[19] |
WANG J, CARSON J K, NORTH M F, et al. A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases. International Journal of Heat and Mass Transfer, 2008, 51(9): 2389-2397.
|
[20] |
WANG J, CARSON J K, NORTH M F, et al. A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer, 2006, 49(17): 3075-3083.
|
[21] |
LITOVSKY E Y, SHAPIRO M. Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: part 1, refractories and ceramics with porosity below 30%. Journal of the American Ceramic Society, 1992, 75(12): 3425-3439.
|
[22] |
CARSON J K, LOVATT S J, TANNER D J, et al. Thermal conductivity bounds for isotropic, porous materials. International Journal of Heat and Mass Transfer, 2005, 48(11): 2150-2158.
|
[23] |
BAREA R, OSENDI M I, FERREIRA J M F, et al. Thermal conductivity of highly porous mullite material. Acta Materialia, 2005, 53(11): 3313-3318.
|
[24] |
PETRASCH J, SCHRADER B, WYSS P, et al. Tomography-based determination of the effective thermal conductivity of fluid-saturated reticulate porous ceramics. Journal of Heat Transfer, 2008, 130: 032602-110.
|
[25] |
SHIMIZU T, MATSUURA K, FURUE H, et al. Thermal conductivity of high porosity alumina refractory bricks made by a slurry gelation and foaming method. Journal of the European Ceramic Society, 2013, 33(15): 3429-3435.
|
[26] |
GONG L, WANG Y, CHENG X, et al. Thermal conductivity of highly porous mullite materials. International Journal of Heat and Mass Transfer, 2013, 67: 253-259.
|
[27] |
GONG L, WANG Y, CHENG X, et al. Porous mullite ceramics with low thermal conductivity prepared by foaming and starch consolidation. Journal of Porous Materials, 2014, 21(1): 15-21.
|
[28] |
CARSON J K, LOVATT S J, TANNER D J, et al. An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations. International Journal of Refrigeration, 2003, 26(8): 873-880.
|
[29] |
MAGDESKI J S. The porosity dependence of mechanical properties of sintered alumina. Journal of the University of Chemical Technology and Metallurgy, 2010, 45(2): 143-148.
|
[30] |
PENG Y, RICHARDSON J T. Properties of ceramic foam catalyst supports: one-dimensional and two-dimensional heat transfer correlations. Applied Catalysis A: General, 2004, 266(2): 235-244.
|
[31] |
HE X, LI Y, WANG L, et al. High emissivity coatings for high temperature application: progress and prospect. Thin Solid Films, 2009, 517(17): 5120-5129.
|
[32] |
SHACKELFORD J F, ALEXANDER W. CRC Materials Science and Engineering Handbook, Third Edition. Florida: CRC press, 2010: 287-287.
|