[1] ZOU X X, LI G D, WANG P P, et al. A precursor route to single- crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties. Dalton Transactions, 2012, 41(32): 9773-9780.[2] LEE S H, DESHPANDE R, PARILLA P A, et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications. Advanced Materials, 2006, 18(6): 763-766.[3] SZIL-GYI I M, F-RIZS B, ROSSELER O, et al. WO3 photocatalysts: Influence of structure and composition. Journal of Catalysis, 2012, 294: 119-127.[4] CHOI H, KIM B S, KO M J, et al. Solution processed WO3 layer for the replacement of PEDOT: PSS layer in organic photovoltaic cells. Organic Electronics, 2012, 13(6): 959-968.[5] HIRAI D, CLIMENT-PASCUAL E, CAVA R J. Superconductivity in WO2.6F0.4 synthesized by reaction of WO3 with teflon. Physical Review B, 2011, 84(17): 174519-----[6] BERAK J M, SIENKO M J. Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. Journal of Solid State Chemistry, 1970, 2(1): 109-133.[7] SHANKS H R, SIDLES P H, DANIELSON G C. Electrical properties of the tungsten bronzes. Adv. Chem. Ser., 1963, 39: 237-245.[8] TAKEDA H, ADACHI K. Near infrared absorption of tungsten oxide nanoparticle dispersions. Journal of the American Ceramic Society, 2007, 90(12): 4059-4061.[9] GREEN M, TRAVLOS A. Sodium-tungsten bronze thin films: I. Optical properties of dilute bronzes. Philosophical Magazine B, 1985, 51(5): 501-520.[10] GREEN M, HUSSAIN Z. Optical properties of dilute hydrogen tungsten bronze thin films. Journal of Applied Physics, 1991, 69(11): 7788-7796.[11] ORTEGA J M, MART-NEZ A I, ACOSTA D R, et al. Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis. Solar Energy Materials and Solar Cells, 2006, 90(15): 2471-2479.[12] GUO J, DONG C, YANG L H, et al. A green route for microwave synthesis of sodium tungsten bronzes NaxWO3(0[13] GU Z J, ZHAI T Y, GAO B F, et al. Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. The Journal of Physical Chemistry B, 2006, 110(47): 23829-23836.[14] SONG R R, SONG H H, ZHOU J S, et al. Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries. Journal of Materials Chemistry, 2012, 22(24): 12369-12374.[15] LE HOUX N, POURROY G, CAMEREL F, et al. WO3 nanoparticles in the 5- 30 nm range by solvothermal synthesis under microwave or resistive heating. The Journal of Physical Chemistry C, 2009, 114(1): 155-161.[16] ZHANG J, TU J P, DU G H, et al. Ultra-thin WO3 nanorod embedded polyaniline composite thin film: synthesis and electrochromic characteristics. Solar Energy Materials and Solar Cells, 2013, 114: 31-37.[17] BAI S J, ZHANG K W, LUO R X, et al. Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. Journal of Materials Chemistry, 2012, 22(25): 12643-12650.[18] WANG J M, KHOO E, LEE P S, et al. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. The Journal of Physical Chemistry C, 2008, 112(37): 14306-14312.[19] GU Z J, MA Y, YANG W S, et al. Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. Chemical Communications, 2005(28): 3597-3599.[20] KANG L T, GAO Y F, LUO H J, et al. Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties. ACS Applied Materials & Interfaces, 2011, 3(2): 135-138.[21] FOUAD N E, NOHMAN A K H, MOHAMED M A, et al. Characterization of ammonium tungsten bronze [(NH4)0.33WO3] in the thermal decomposition course of ammonium paratungstate. Journal of Analytical and Applied Pyrolysis, 2000, 56(1): 23-32.[22] XI G C, YE J H, MA Q, et al. In situ growth of metal particles on 3D urchin-like WO3 nanostructures. Journal of the American Chemical Society, 2012, 134(15): 6508-6511.[23] CHEVRIER G, GERAND B, SEGUIN L, et al. Comparative structure refinement of MO3-1/3H2O (M= Mo, W) from X-Ray and neutron powder diffraction data and dehydration process. Materials Science Forum, 1996, 228: 695-700.[24] VALMALETTE J C, ISA M. Size effects on the stabilization of ultrafine zirconia nanoparticles. Chemistry of Materials, 2002, 14(12): 5098-5102.[25] GUO C, YIN S, ZHANG P L, et al. Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. Journal of Materials Chemistry, 2010, 20(38): 8227-8229. |