[1] TERUAKI O, YOSUKE S, MASAYUKI I, et al. Acoustic emission studies of low thermal expansion aluminum-titanate ceramics strengthened by compounding mullite. Ceramic International, 2007, 33(5): 879–882.[2] LOW I M, OO Z, OCONNOR B H. Effect of atmospheres on the thermal stability of aluminium titanate. Physica B, 2006, 385-386 (1): 502–504.[3] JING LAN, CHEN XIAO-YAN, HAN GUO-MING, et al. Effect of additives on properties of aluminium titanate ceramics. Transactions of Nonferrous Metals Society of China, 2011, 21: 1574–1579.[4] OIKONOMOU P, DEDELOUDIS C, STOURNARAS C J, et al. Stabilized tialite-mullite composites with low thermal expansion and high strength for catalytic converters. Journal of the European Ceramic Society, 2007, 27(12): 3475–3482.[5] LIU XIN, GU XING-WEI, LI JIA-KE. Preparation of porous insulating aluminium titanate material. Journal of Ceramics, 2010, 31(1): 87–90.[6] QI HONG, XING WEI-HONG, FAN YI-QUN. Effect of holding time on properties of macroporous support sintered at low temperature. Journal of the Chinese Ceramic Society, 2011, 39(3): 507–511.[7] NAGHIZADEH R, REZAIE H R, GOLESTANI-FARD F. The influence of composition, cooling rate and atmosphere on the synthesis and thermal stability of aluminum titanate. Materials Science and Engineering B, 2009, 157(1/2/3): 20–25.[8] SKALA R D, LI D, LOW I M. Diffraction, structure and phase stability studies on aluminium titanate. Journal of the European Ceramic Society, 2009, 29(1): 67–75.[9] MAKOTO T, KAZUMI K, NAOKI K, et al. Effect of grain boundary cracks on the corrosion behaviour of aluminium titanate ceramics in a molten aluminium alloy. Corrosion Science, 2012, 54: 90–96.[10] CHEN C H, AWAJI H. Temperature dependence of mechanical properties of aluminum titanate ceramics. Journal of the European Ceramic Society, 2007, 27(1): 13–18.[11] ZHAO HAO, LI HAI-JIAN. Preparations and applications of low thermal expansion aluminum titante ceramics. Ceramics, 2005, 7: 30–33.[12] CUI HONG-ZHI, XU GUO-GONG, GE CHUAN-LIANG, et al. Synthesis of porous Al2TiO5 ceramic by reaction sintering method. Journal of the Ceramic Society of Japan, 2012, 120(1406): 413–416.[13] ANANTHAKUMAR S, JAYASANKAR M, WARRIER K G K. Microstructural, mechanical and thermal characterisation of Sol-Gel-derived aluminium titanate-mullite ceramic composites. Acta Materialia, 2006, 54(1): 1965–2974.[14] AMPARO B, MARIA D S, VICTORIA G R, et al. Enhanced properties of alumina-aluminium titanate composites obtained by spark plasma reaction-sintering of slip cast green bodies. Composites Part B: Engineering, 2013, 47: 255–259.[15] CABRERO J, AUDUBERT F, PAILLER R. Fabrication and characterization of sintered TiC-SiC composites. Journal of the European Ceramic Society, 2011, 31(3): 313–320.[16] LIU H, TIAN H. Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process. Journal of the European Ceramic Society, 2012, 32(10): 2505–2512.[17] YU LEI, WANG CHANG-AN, HUANG YONG, et al. Preparation and properties of SiCpl/ZrB2 ultra-high temperature ceramics. Journal of the Chinese Ceramic Society, 2008, 36(1): 85-88.[18] ALIREZA R Y, HAMIDREZA B, HOSSEIN A, et al. Effect of sintering temperature and siliconcarbide fraction on density, mechanical properties and fracture mode of alumina-silicon carbide micro/nanocomposites. Materials and Design, 2012, 37: 251–255.[19] GUILLAUME M, K?VIN M, HERV? M, et al. Production of Al2O3-TiO2 catalyst supports with controlled properties using a co-precipitation process. Powder Technology, 2009, 190(1/2): 84–88.[20] HAREESH U S, VASUDEVAN A K, WARRIER K G W, et al. Dependence of precursor characteristics on low temperature Densification of Sol-Gel aluminium titanate. Journal of the European Ceramic Society, 2001, 21(13): 2345–2351.[21] WANG ZHEN-FENG, MA ZHI-MING, YANG TIAN-JUN. Corrosion behavior of TiO2-bearing blast furnace slag to sialon bonded SiC refractories. Naihuo Cailiao. 2000, 34(5): 262–264.[22] KONG L B, CHEN Y Z, ZHANG T S. Effect of alkaline-earth oxides on phase formation and morphology development of mullite ceramics. Ceramics International, 2004, 30(7): 1319–1323.[23] CHEN JIE, RUAN YU-ZHONG, SHEN YANG, et al. Synthesis of self-bonded aluminium titanate-mullite materals with waste aluminium sludge. Journal of the Chinese Ceramic Society, 2009, 28(4): 693–696.[24] MELENDEZ M J J, JIMENEZ M M, DOMNGUEZ R A, et al. High temperature mechanical behavior of aluminium titanate- mullite composites. Journal of the European Ceramic Society, 2001, 21(1): 63–70.[25] SHEN YANG, RUAN YU-ZHONG. Influence of SiO2 on aluminium titanate structure and performance. Journal of the European Ceramic Society, 2008, 27(6): 1221–1224.[26] CHEN GANG-LING, QI HONG, XING WEI-HONG, et al. In situ reaction synthesis of needle-like macroporous mullite supports. Journal of Inorganic materials, 2008, 23(3): 597–601.[27] HASHIMOTO S, YAMAGUCHI A. Synthesis of needlelike mullite particles using potassium sulfate flux. Journal of the European Ceramic Society, 2000, 20(4): 397–402.[28] PARK W S, CHOI D J, KIM H D. Modification of inner pores with silicon carbide whiskers onto the Al2O3 substrate by CVI process. Key Engineering Materials, 2005, 287: 212–219.[29] SMIRNOV A, BARTOLOME J F. Mechanical properties and fatigue life of ZrO2-Ta composites prepared by hot pressing. Journal of the European Ceramic Society, 2012, 23(15): 3899–3904.[30] SHE J H, OHJI T. Fabrication and characterization of highly porous mullite ceramics. Materials Chemistry and Physics, 2003, 80(3): 610–614. |