[1] PHILIP J, DIMITRIOS H, ERWIN L, et al. New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovolt: Res Appl., 2011, 19(7): 894–897.[2] NITSCHE R, SARGENT D F, WILD P. Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport. J. Cryst. Growth, 1967, 1(1): 52–53.[3] ITO K, NAKAZAWA T. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys., 1988, 27: 2094–2097.[4] KATAGIRI H, SASAGUCHI N, HANDO S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporation precursors. Sol. Energy Mat. Sol. C, 1997, 49(1–4): 407–414.[5] KATAGIRI H, JIMBO K, MAW W S, et al. Development of CZTS-based thin film solar cells. Thin Solid Films, 2009, 517(7): 2455–2460.[6] RAMASAMY K, MOHAMMAD A M, PAUL O. Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chem. Commun., 2012, 48: 5703–5714.[7] BARKHOUSE D A R, GUNAWAN O, GOKMEN T, et al. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovolt., 2012, 20(1): 6–11.[8] TODOROV T K,TANG J, BAG S, et al. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Adv. Energy Mater., 2012, 3(1): 34–38.[9] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 1961, 32(3): 510–519.[10] SEOL J S, LEE S Y, LEE J C, et al. Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process. Sol. Energy Mat. Sol. C, 2003, 75(1/2): 155–162.[11] ZHOU Z H, WANG Y Y, XU D, et al. Fabrication of Cu2ZnSnS4 screen printed layers for solar cells. Sol. Energy Mat. Sol. C, 2010, 94(12): 2042–2045.[12] SCRAGG J J, DALE P J, PETER L M. Towards sustainable materials for solar energy conversion:preparation and photoelectrochemical characterization of Cu2ZnSnS4. Electrochem. Commun., 2008, 10(4): 639–642. |