无机材料学报 ›› 2014, Vol. 29 ›› Issue (5): 449-460.DOI: 10.3724/SP.J.1077.2014.13669
• 综述 • 下一篇
张发强1, 2, 李永祥1
收稿日期:
2013-12-19
修回日期:
2014-01-23
出版日期:
2014-05-20
网络出版日期:
2014-04-24
作者简介:
张发强(1986-), 男, 博士研究生. E-mail: zhangfq@student.sic.ac.cn
基金资助:
国家自然科学基金重点项目(50932007); 国际科技部973项目(2009CB613305)
ZHANG Fa-Qiang1, 2, LI Yong-Xiang1
Received:
2013-12-19
Revised:
2014-01-23
Published:
2014-05-20
Online:
2014-04-24
About author:
ZHANG Fa-Qiang. E-mail: zhangfq@student.sic.ac.cn
Supported by:
National Natural Science Foundation of China (50932007); The Ministry of Science and Technology Project 973(2009CB613305)
摘要: 铋层状结构铁电体 (BLSF) 作为一种类钙钛矿无铅铁电压电材料, 由于其在高温、高频以及非易失性铁电随机存储器等领域具有突出的综合优势, 因而受到广泛关注。本文以BLSF的综合特征为基础, 对其结构设计和微结构研究中存在的问题进行了详细探讨, 并重点总结了近二十年来其在性能优化和薄膜制备中取得的进展。此外, 本文还对一些以铁电为背景的新的研究方向做了介绍。最后提出了BLSF在未来发展中值得关注的几个重要问题。
中图分类号:
张发强, 李永祥. 铋层状结构铁电体的研究进展[J]. 无机材料学报, 2014, 29(5): 449-460.
ZHANG Fa-Qiang, LI Yong-Xiang. Recent Progress on Bismuth Layer-structured Ferroelectrics[J]. Journal of Inorganic Materials, 2014, 29(5): 449-460.
[1] AURIVILLIUS B. Mixed bismuth oxides with layer lattices. 1. The structure type of CaNb2Bi2O9. Arkiv for Kemi, 1950, 1(5): 463-480.[2] AURIVILLIUS B. Mixed bismuth oxides with layer lattices. 2. Structure of Bi4Ti3O12. Arkiv for Kemi, 1950, 1(6): 499-512.[3] AURIVILLIUS B. Mixed bismuth oxides with layer lattices III. Structure of BaBi4Ti4O15. Arkiv for Kemi, 1950, 2(6): 519-527.[4] NEWNHAM R E, WOLFE R W, DORRIAN J F. Structural basis of ferroelectricity in bismuth titanate family. Materials Research Bulletin, 1971, 6(10): 1029-1039.[5] STOLTZFUS M W, WOODWARD P M, SESHADRI R, et al. Structure and bonding in SnWO4, PbWO4, and BiVO4: Lone pairs vs inert pairs. Inorganic Chemistry, 2007, 46(10): 3839-3850.[6] KUDO A, KATO H, TSUJI I. Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters, 2004, 33(12): 1534-1539.[7] WANG W Z, SHANG M, YIN W Z, et al. Recent progress on the bismuth containing complex oxide photocatalysts. Journal of Inorganic Materials, 2012, 27(1): 11-18.[8] KENDALL K R, NAVAS C, THOMAS J K, et al. Recent developments in oxide ion conductors: aurivillius phases. Chemistry of Materials, 1996, 8(3): 642-649.[9] ZHANG S J, FA-PENG Y. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc., 2011, 94(10): 3153-3170.[10] TRESSLER J F, ALKOY S, NEWNHAM R E. Piezoelectric sensors and sensor materials. Journal of Electroceramics, 1998, 2(4): 257-272.[11] YAN H X, LI C E, ZHOU J G, et al. Structures and properties of bismuth layer-structured piezoelectric ceramics with high TC. Journal of Inorganic Materials, 2000, 15(2): 209-220.[12] LOMANOVA N A, MOROZOV M I, UGOLKOV V L, et al. Properties of aurivillius phases in the Bi4Ti3O12-BiFeO3 system. Inorganic Materials, 2006, 42(2): 189-195.[13] SCHAAK R E, MALLOUK T E. Perovskites by design: a toolbox of solid-state reactions. Chemistry of Materials, 2002, 14(4): 1455-1471.[14] ARMSTRONG R A, NEWNHAM R E. Bismuth titanate solid solutions. Materials Research Bulletin, 1972, 7(10): 1025-1034.[15] 陆佩文. 无机材料科学基础. 武汉: 武汉工业大学出版社, 1996: 43-44.[16] SUBBARAO E C. Crystal chemistry of mixed bismuth oxides with layer-type structure. J. Am. Ceram. Soc., 1962, 45(4): 166-169.[17] STONEHAM A M, DURHAM P J. Ordering of crystallographic shear planes-theory of regular arrays. Journal of Physics and Chemistry of Solids, 1973, 34(12): 2127-2135.[18] RAMASESHA S, RAO C N R. Monte-carlo simullation of polytypes. Philosophical Magazine, 1977, 36(4): 827-833.[19] KITTEL C. On infinitely adaptive crystal structures. Solid State Communications, 1978, 25(8): 519-520.[20] KIKUCHI T. Stability of layered bismuth compounds in relation to the structural mismatch. Materials Research Bulletin, 1979, 14(12): 1561-1569.[21] IGUCHI E, TILLEY R J D. The elastic strain-energy of crystallographic shear planes in reduced tungsten trioxide. J. Solid State Chem., 1980, 32(2): 221-231.[22] FRIT B, MERCURIO J P. The crystal-chemistry and dielectric-properties of the aurivillius family of complex bismuth oxides with perovskite-like layered structures. J. Alloys. Compd., 1992, 188(1/2): 27-35.[23] LOMANOVA N A, GUSAROV V V. Phase states in the Bi4Ti3O12-BiFeO3 section in the Bi2O3-TiO2-Fe2O3 system. Russian Journal of Inorganic Chemistry, 2011, 56(4): 616-620.[24] MOROZOV M I, GUSAROV V V. Synthesis of Am-1Bi2MmO3m+3 compounds in the Bi4Ti3O12-BiFeO3 system. Inorganic Materials, 2002, 38(7): 723-729.[25] ZHOU W Z. Microstructures of some Bi-W-Nb-O phases. J. Solid State Chem., 2002, 163(2): 479-483.[26] DING Y, LIU J S, ZHU J S, et al. Stacking faults and their effects on ferroelectric properties in strontium bismuth tantalate. Journal of Applied Physics, 2002, 91(4): 2255-2261.[27] HUTCHISON J L, ANDERSON J S, RAO C N R. Electron- microscopy of ferroelectric bismuth oxides containing perovskite layers. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1977, 355(1682): 301-312.[28] HUTCHISON J L, SMITH D J. High-resolution imaging of the ferroelectric perovskite Ba2Bi4Ti5O18. Acta Crystallographica Section A, 1981, 37(JAN): 119-125.[29] ZHOU W Z. Aurivillius phases: Non-superconducting materials- Advanced Materials, 1990, 2(2): 94-97.[30] KOBAYASHI T, NOGUCHI Y, MIYAYAMA M. Polarization properties of superlattice-structured Bi4Ti3O12-BaBi4Ti4O15 single crystals and ceramics: Comparison with Bi4Ti3O12 and BaBi4Ti4O15. Japanese Journal of Applied Physics, 2004, 43(9B): 6653-6657.[31] KOBAYASHI T, NOGUCHI Y, MIYAYAMA M. Enhanced spontaneous polarization in superlattice-structured Bi4Ti3O12-BaBi4Ti4O15 single crystals. Applied Physics Letters, 2005, 86(1): 012907-1-3.[32] GAO X, GU H, LI Y X, et al. Structural evolution of the intergrowth bismuth-layered Bi7Ti4NbO21. Journal of Materials Science, 2011, 46(16): 5423-5431.[33] Gao X, Wang X H, Xing J J, et al. Nb Solution within Bi4Ti3O12 sub-structure in the intergrowth bismuth-layered compound Bi7Ti4NbO21. Journal of Inorganic Materials, 2013, 28(5): 561-565[34] RAO C N R. Intergrowth structures in inorganic solids: a new class of materials. Bull. Mater. Sci., 1985, 7(3/4): 155-178.[35] RAO C N R, Thomas J M. Intergrowth structrues: the chemistry of solid-solid interfaces. Accounts of Chemical Research, 1985, 18(4): 113-119.[36] DORRIAN J F, NEWNHAM R E, KAY M I, et al. Crystal structure of Bi4Ti3O12. Ferroelectrics, 1971, 3(1): 17-27.[37] Rae A D, Thompson J G, Withers R L, et al. Structure refingment of commensurately modulated bismuth titanate, Bi4Ti3O12. Acta Crystallogr. Sect. B-Struct. Commun., 1990, 46: 474-487.[38] BROWN I D. Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 2009, 109(12): 6858-6919.[39] SHIMAKAWA Y, KUBO Y, NAKAGAWA Y, et al. Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9. Applied Physics Letters, 1999, 74(13): 1904-1906.[40] SHIMAKAWA Y, KUBO Y, NAKAGAWA Y, et al. Crystal structure and ferroelectric properties of ABi2Ta2O9(A = Ca, Sr, and Ba). Physical Review B, 2000, 61(10): 6559-6564.[41] SUBBARAO E C. Family of ferroelectric bismuth compounds. Journal of Physics and Chemistry of Solids, 1962, 23(6): 665-676.[42] LI C E, LI Y, ZHOU J G. Investigation on high temperature properties for bismuth layer structured piezoelectric ceramics and the sensors of the ceramics. Electronic Components and Materials, 2002, 21(5): 11-13.[43] LIN D M, XIAO D Q, ZHU J G, et al. Rearches and progresses of bismuth layer-based lead-free piezoelectric ceramics. Journal of Functional Materials, 2003, 34(3): 491-495.[44] PARK B H, KANG B S, BU S D, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999, 401(6754): 682-684.[45] CHON U, JANG H M, KIM M G, et al. Layered perovskites with giant spontaneous polarizations for nonvolatile memories. Physical Review Letters, 2002, 89(8): 087601.[46] ZHU J S, SU D, LU X M, et al. La-doped effect on the ferroelectric properties of Bi4Ti3O12-SrBi4Ti4O15 thin film fabricated by pulsed laser deposition. Journal of Applied Physics, 2002, 92(9): 5420-5424.[47] CHON U, SHIM J S, JANG H M. Ferroelectric properties and crystal structure of praseodymium-modified bismuth titanate. Journal of Applied Physics, 2003, 93(8): 4769-4775.[48] HUANOSTA-TERA A, CASTANEDA-GUZMAN R, PINEDA- FLORES J L. Characterization of Bi4-xRxTi3O12 (Rx = Pr, Nd, Gd, Dy, x=0.8) layered electroceramics by a photoacoustic method. Materials Research Bulletin, 2003, 38(6): 1073-1079.[49] CHEN M, LIU Z L, WANG Y, et al. Ferroelectric properties and microstructures of Sm-doped Bi4Ti3O12 ceramics. Physica B-Condensed Matter, 2004, 352(1-4): 61-65.[50] GARG A, SNEDDEN A, LIGHTFOOT P, et al. Investigation of structural and ferroelectric properties of pulsed-laser-ablated epitaxial Nd-doped bismuth titanate films. Journal of Applied Physics, 2004, 96(6): 3408-3412.[51] SIMOES A Z, RIES A, FILHO F M, et al. Fatigue-free behavior of Bi3.25La0.75Ti3O12 thin films grown on several bottom eletrodes by the polymeric precursor method. Applied Physics Letters, 2004, 85(24): 5962-5964.[52] WATANABE T, KOJIMA T, UCHIDA H, et al. Spontaneous polarization of neodymium-substituted Bi4Ti3O12 estimated from epitaxially grown thin films with in-plane c-axis orientations. Japanese Journal of Applied Physics, 2004, 43(2B): L309-L311.[53] ZENG J T, LI Y X, WANG D, et al. Electrical properties of neodymium doped CaB4Ti4O15 ceramics. Solid State Communications, 2005, 133(9): 553-557.[54] YI Z G, LI Y X, ZENG J T, et al. Lanthanum distribution and dielectric properties of intergrowth Bi5-xLaxTiNbWO15 ferroelectrics. Applied Physics Letters, 2005, 87(20): 202901.[55] YI Z G, LI Y X, WANG Y, et al. Dielectric and ferroelectric properties of intergrowth Bi7-xLaxTi4NbO21 ceramics. Applied Physics Letters, 2006, 88(15): 152909.[56] GE W Y, ZHU W L, HIGASHINO M, et al. Spectrally resolved microprobe cathodoluminescence of intergrowth Bi5-xLaxTiNbWO15 ferroelectrics. Journal of Applied Physics, 2007, 102(7): 076106.[57] YI Z G, LI Y X, ZENG J T, et al. Structure and dielectric properties of Bi5-xLaxNb3O15 ceramics. Journal of Electroceramics, 2008, 21(1-4): 319-322.[58] SHAO C W, LU Y Q, WANG D, et al. Effect of Nd substitution on the microstructure and electrical properties of Bi7Ti4NbO21 piezoceramics. J. Eur. Ceram. Soc., 2012, 32(14): 3781-3789.[59] ZONG L C, ZENG J T, ZHAO S C, et al. Study on A-site cation doping of CaBi2Nb2O9 with Bismuth layered structure. Journal of Inorganic Materials, 2012, 27(7): 726-730.[60] WANG C B, FU L, SHEN Q, et al. Effect of Ho doping on structure and ferroelectric property of Bi4-xHoxTi3O12 ceramics. Journal of Inorganic Materials, 2012, 27(7): 721-725.[61] YAU C Y, PALAN R, TRAN K, et al. Mechanism of polarization enhancement in la-doped Bi4Ti3O12 films. Applied Physics Letters, 2005, 86(3): 032907.[62] JIANG X P, WEN J X, CHEN C, et al. Piezoelectric properties of Mn-modified Na0.5Bi2.5Nb2O9 for high temperature applications. Journal of Inorganic Materials, 2012, 27(8): 827-832.[63] CU D G, LI G R, ZHENG L Y, et al. Electrical properties of mn-modified CaBi4Ti4O15 piezoelectrics for high temperature application. Journal of Inorganic Materials, 2008, 23(3): 626-630.[64] PARK B H, HYUN S J, BU S D, et al. Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Applied Physics Letters, 1999, 74(13): 1907-1909.[65] SHULMAN H S, TESTORF M, DAMJANOVIC D, et al. Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc., 1996, 79(12): 3124-3128.[66] NOGUCHI Y, MIYAYAMA M. Large remanent polarization of vanadium-doped Bi4Ti3O12. Applied Physics Letters, 2001, 78(13): 1903-1905.[67] BAO Z H, YAO Y Y, ZHU J S, et al. Study on ferroelectric and dielectric properties of niobium doped Bi4Ti3O12 ceramics and thin films prepared by PLD method. Materials Letters, 2002, 56(5): 861-866.[68] WANG X S, ISHIWARA H. Polarization enhancement and coercive field reduction in W- and Mo-doped Bi3.35La0.75Ti3O12 thin films. Applied Physics Letters, 2003, 82(15): 2479-2481.[69] VILLEGAS M, JARDIEL T, FARIAS G. Sintering and electrical properties of Bi4Ti2.95WxO11.9+3x piezoelectric ceramics. J. Eur. Ceram. Soc., 2004, 24(6): 1025-1029.[70] JIANG X P, YANG Q, CHEN C, et al. Nb-modified Bi4Ti3O12 piezoelectric for high temperature applications. Journal of Inorganic Materials, 2010, 25(11): 1169-1174.[71] KORZUNOVA L V, SHEBANOV L A. New perovskite-like high-temperature ferroelectrics. Ferroelectrics, 1989, 93: 111-115.[72] UCHIDA H, YOSHIKAWA H, OKADA I, et al. Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd3+/V5+ cosubstitution. Applied Physics Letters, 2002, 81(12): 2229-2231.[73] WATANABE T, FUNAKUBO H, SAITO K, et al. Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12- based thin films with long-range lattice matching. Applied Physics Letters, 2002, 81(9): 1660-1662.[74] WATANABE T, KOJIMA T, SAKAI T, et al. Large remanent polarization of Bi4Ti3O12-based thin films modified by the site engineering technique. Journal of Applied Physics, 2002, 92(3): 1518-1521.[75] LI W, YIN Y, SU D, et al. Ferroelectric properties of polycrystalline bismuth titanate films by Nd3+/W6+ cosubstitution. Journal of Applied Physics, 2005, 97(8): 084102.[76] NOGUCHI Y, MIYAYAMA M, KUDO T. Ferroelectric properties of intergrowth Bi4Ti3O12-SrBi4Ti4O15 ceramics. Applied Physics Letters, 2000, 77(22): 3639-3641.[77] YI Z G, WANG Y, LI Y X, et al. Ferroelectricity in intergrowth Bi3TiNbO9-Bi4Ti3O12 ceramics. Journal of Applied Physics, 2006, 99(11): 114101.[78] TAKENAKA T, SAKATA K. Grain-orientation and electrical- properties of hot-forged Bi4Ti3O12 ceramics. Japanese Journal of Applied Physics, 1980, 19(1): 31-39.[79] TAKENAKA T, SAKATA K. Grain-orientation effects on electrical-properties of bismuth layer-structured ferroelectric Pb1-x(NaCe)0.5xBi4Ti4O15 solid-solution. Journal of Applied Physics, 1984, 55(4): 1092-1099.[80] FUIERER P A, NICHTAWITZ A. Electric Field Assisted Hot Forging of Bismuth Titanate. Isaf '94-Proceedings of the Ninth Ieee International Symposium on Applications of Ferroelectrics, Penn state Univ, 1994: 126-129.[81] SHEN Z J, LIU J, GRINS J, et al. Effective grain alignment in Bi4Ti3O12 ceramics by superplastic-deformation-induced directional dynamic ripening. Advanced Materials, 2005, 17(6): 676-680.[82] CHEN W W, HOTTA Y, TAMURA T, et al. Effect of suction force and starting powders on microstructure of Bi4Ti3O12 ceramics prepared by magnetic alignment via slip casting. Scripta Materialia, 2006, 54(12): 2063-2068.[83] CHEN W W, KINEMUCHI Y, WATARI K, et al. Grain-oriented Bi4Ti3O12 ferroelectric ceramics prepared by magnetic alignment. J. Am. Ceram. Soc., 2006, 89(2): 490-493.[84] TAKEUCHI T, TANI T, SAITO Y. Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Japanese Journal of Applied Physics, 1999, 38(9B): 5553-5556.[85] TAKEUCHI T, TANI T, SAITO Y. Unidirectionally textured CaBi4Ti4O15 ceramics by the reactive templated grain growth with an extrusion. Japanese Journal of Applied Physics, 2000, 39(9B): 5577-5580.[86] DURAN C, TROLIER-MCKINSTRY S, MESSING G L. Dielectric and piezoelectric properties of textured Sr0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth. Journal of Materials Research, 2002, 17(9): 2399-2409.[87] ZENG J T, LI Y X, YANG Q B, et al. Grain oriented CaBi4Ti4O15 piezoceramics prepared by the screen-printing multilayer grain growth technique. J. Eur. Ceram. Soc., 2005, 25(12): 2727-2730.[88] WU M J, YANG Q B, LI Y X. Application of texture techniques to enhanced lead-free piezoceramics. Journal of Inorganic Materials, 2007, 22(6): 1025-1031.[89] WINTER M R, DIANTONIO C B, YANG P, et al. Screen printing to achieve highly textured Bi4Ti3O12. J. Am. Ceram. Soc., 2010, 93(7): 1922-1926.[90] SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432(7013): 84-87.[91] DU H L, LI Z M, ZHOU W C, et al. Researches and developments of (Na0.5K0.5)NbO3-based lead-free piezoelectric ceramics. Journal of Inorganic Materials, 2006, 21(6): 1281-1291.[92] LI Y L, HUI C, LI Y X, et al. Enhanced ferroelectric and piezoelectric properties of textured K0.45Na0.55NbO3 ceramics prepared by screen-printing technique. Journal of Inorganic Materials, 2012, 27(2): 214-218.[93] Wu M J, Li Y X. Topochemical synthesis of plate-like Na0.5Bi0.5TiO3 templates from Bi4Ti3O12. Materials Letters, 2010, 64(10): 1157-1159.[94] WU M J, LI Y X, WANG D, et al. Highly textured (Na1/2Bi1/2)0.94Ba0.06TiO3 ceramics prepared by the screen-printing multilayer grain growth technique. Ceramics International, 2008, 34(4): 753-756.[95] TAKEI W J, FORMIGON N P, Francomb M h. Preparation and epitaxy of sputtered films of ferroelectric Bi4Ti3O12. Journal of Vacuum Science & Technology, 1970, 7(3): 442-448.[96] SUGIBUCHI K, KUROGI Y, ENDO N. Ferroelectric field-effect memory device using Bi4Ti3O12 Film. Journal of Applied Physics, 1975, 46(7): 2877-2881.[97] WU S Y. Polarization reversal and film structure in ferroelectric Bi4Ti3O12 films deposited on silicon. Journal of Applied Physics, 1979, 50(6): 4314-4318.[98] DE ARAUJO C A P, CUCHIARO J D, MCMILLAN L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 1995, 374(6523): 627-629.[99] DING Y, LIU J S, WANG Y N. Transmission electron microscopy study on ferroelectric domain structure in SrBi2Ta2O9 ceramics. Applied Physics Letters, 2000, 76(1): 103-105.[100] DING Y, LIU J S, MACLAREN I, et al. Ferroelectric switching mechanism in SrBi2Ta2O9. Applied Physics Letters, 2001, 79(7): 1015-1017.[101] DING Y, LIU J S, QIN H X, et al. Why lanthanum-substituted bismuth titanate becomes fatigue free in a ferroelectric capacitor with platinum electrodes. Applied Physics Letters, 2001, 78(26): 4175-4177.[102] SU D, ZHU J S, WANG Y N, et al. Different domain structures and their effects on fatigue behavior in Bi3TiTaO9 and SrBi2Ta2O9 ceramics. Journal of Applied Physics, 2003, 93(8): 4784-4787.[103] ISHIKAWA K, FUNAKUBO H. Electrical properties of (001)- and (116)-oriented epitaxial SrBi2Ta2O9 thin films prepared by metalorganic chemical vapor deposition. Applied Physics Letters, 1999, 75(13): 1970-1972.[104] LEE H N, SENZ S, ZAKHAROV N D, et al. Growth and characterization of non-c-oriented epitaxial ferroelectric SrBi2Ta2O9 films on buffered Si(100). Applied Physics Letters, 2000, 77(20): 3260-3262.[105] LEE H N, VISINOIU A, SENZ S, et al. Structural and electrical anisotropy of (001)-, (116)-, and (103)-oriented epitaxial SrBi2Ta2O9 thin films on SrTiO3 substrates grown by pulsed laser deposition. Journal of Applied Physics, 2000, 88(11): 6658-6664.[106] LETTIERI J, ZURBUCHEN M A, JIA Y, et al. Epitaxial growth of non-c-oriented SrBi2Nb2O9 on (111) SrTiO3. Applied Physics Letters, 2000, 76(20): 2937-2939.[107] LEE H N, ZAKHAROV D N, SENZ S, et al. Epitaxial growth of ferroelectric SrBi2Ta2O9 thin films of mixed (100) and (116) orientation on SrLaGaO4(110). Applied Physics Letters, 2001, 79(18): 2961-2963.[108] MOON S E, SONG T K, BACK S B, et al. Controlled growth of a-/b- and c-axis oriented epitaxial SrBi2Ta2O9 ferroelectric thin films. Applied Physics Letters, 1999, 75(18): 2827-2829.[109] LEE H N, HESSE D, ZAKHAROV N, et al. Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrates. Science, 2002, 296(5575): 2006-2009.[110] MAO X Y, WANG W, CHEN X B. Electrical and magnetic properties of Bi5FeTi3O15 compound prepared by inserting BiFeO3 into Bi4Ti3O12. Solid State Communications, 2008, 147(5/6): 186-189.[111] HU X, WANG W, MAO X Y, et al. Magnetic and electric properties of Co-doped Bi5Ti3FeO15 multiferroic ceramics. Acta Physica Sinica, 2010, 59(11): 8160-8166.[112] MAO X, WANG W, SUN H, et al. Influence of different synthesizing steps on the multiferroic properties of Bi5FeTi3O15 and Bi5Fe0.5Co0.5Ti3O15 ceramics. Journal Of Materials Science, 2012, 47(6): 2960-2965.[113] WANG W, HU X, MAO X Y, et al. Ferromagnetism in the multiferroic Bi5FeTi3O15 ceramics Arising from the magnetic coupling. Journal of Inorganic Materials, 2010, 25(12): 1263-1267.[114] SUN H, LU X, XU T, et al. Study of multiferroic properties in Bi5Fe0.5Co0.5Ti3O15 thin films. Journal of Applied Physics, 2012, 111(12): 124116.[115] YANG F J, SU P, WEI C, et al. Large magnetic response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 ceramic at room-temperature. Journal of Applied Physics, 2011, 110(12): 126102.[116] MAO X, SUN H, WANG W, et al. Ferromagnetic, ferroelectric properties, and magneto-dielectric effect of Bi4.25La0.75Fe 0.5Co0.5Ti3O15 ceramics. Applied Physics Letters, 2013, 102(7): 072904.[117] CHOI W S, CHISHOLM M F, SINGH D J, et al. Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat Commun, 2012, 3(689): 1-6.[118] LINES M E, GLASS A M. Principles and Applications of Ferroelectric and Related Materials, Oxford, London: Oxford University, 1977: 580-585.[119] CHOI T, LEE S, CHOI Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923): 63-66.[120] HUANG H. Solar energy: ferroelectric photovoltaics. Nat. Photon., 2010, 4(3): 134-135.[121] YANG S Y, SEIDEL J, BYRNES S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nano., 2010, 5(2): 143-147.[122] SEIDEL J, FU D, YANG S Y, et al. Efficient photovoltaic current generation at ferroelectric domain walls. Physical Review Letters, 2011, 107(12): 126805.[123] YUAN Y, REECE T J, SHARMA P, et al. Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater., 2011, 10(4): 296-302.[124] CHOI W S, LEE H N. Band gap tuning in ferroelectric Bi4Ti3O12 by alloying with LaTMO3 (TM = Ti, V, Cr, Mn, Co, Ni, and Al). Applied Physics Letters, 2012, 100(13): 132903.[125] 殷之文. 电介质物理学. 北京: 科学出版社, 2003: 829-832.[126] LIU F, LU Y Q, LI Y X. First-principles study of intergrowth bismuth layer-structured ferroelectric Bi7Ti4NbO21. Journal of Inorganic Materials, 2014, 29(1): 38-42. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 冯静静, 章游然, 马名生, 陆毅青, 刘志甫. 冷烧结技术的研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 125-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||