[1] |
LUO Q P, LEI B X, YU X Y, et al. Hiearchical ZnO rod-in-tube nano-architecture arrays produced via a two-step hydrothermal and ultrasonication process. J. Mater. Chem., 2011, 21(24): 8709-8714.
|
[2] |
KIM Y S, KANG S H. Enhancement of UV emission in ZnO nanorods by growing additional ZnO layers on the surface. Nanotechnology, 2011, 22(27): 275707-1-7.
|
[3] |
CHUNG Y A, CHANG Y C, LU M Y, et al. Synthesis and photocatalytic activity of small-diameter ZnO nanorods. J. Electrochem. Soc., 2009, 156(5): F75-F79.
|
[4] |
LINSEBIGLER A, LU G Q, YATES J T. Photocatalysis on Ti on surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3): 735-758.
|
[5] |
ANPO M, TAKEUCHI M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal., 2003, 216(1/2): 505-516.
|
[6] |
WANG J W, MAO B D, GOLE G L, et al. Visible-light-driven reversible and switchable hydrophobic to hydrophilic nitrogen-doped titania surfaces: correlation with photocatalysis. Nanoscale, 2010, 2(10): 2257-2261.
|
[7] |
IN S, ORLOV A, BERG R, et al. Effective visible light-activated B-doped and B,N-Co doped TiO2 photocatalysts. J. Am. Chem. Soc., 2007, 129(45): 13790-13791.
|
[8] |
VALENTIN C D, PACCHIONI G, SELLONI A. Theory of carbon doping of titanium dioxide. Chem. Mater., 2005, 17(26): 6656-6665.
|
[9] |
JIANG J, ZHANG X, SUN P B, et al. ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J. Phys. Chem. C, 2011, 115(42): 20555-20564.
|
[10] |
ZHONG J, CHEN F, ZHANG J L. Carbon-deposited TiO2: synthesis, characterization, and visible photocatalytic performance. J. Phys. Chem. C, 2010, 114(2): 933-939.
|
[11] |
ZHANG L W, FU H B, ZHU Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv. Funct. Mater., 2008, 18(15): 2180-2189.
|
[12] |
CHO S, JANG J W, LEE J S, et al. Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis.CrystEngComm, 2010, 12(11): 3929-3935.
|
[13] |
DONG F, GUO S, WANG H Q, et al. Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. J. Phys. Chem. C, 2011, 115(27): 13285-13292.
|
[14] |
MITORAJ D, KISCH H. The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew. Chem. Int. Ed., 2008, 47(51): 9975-9978.
|
[15] |
ZHAO L, CHEN X F, WANG X C, et al. One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis. Adv. Mater., 2010, 22(30): 3317-3321.
|
[16] |
ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269-271.
|
[17] |
HAMEED A, GOMBAC V, MONTINI T, et al. Synthesis, characterization and photocatalytic activity of NiO-Bi2O3 nanocomposites. Chem. Phys. Lett., 2009, 472(4/5/6): 212-216.
|
[18] |
ZOU C W, RAO Y F, ALYAMANI A, et al. Heterogeneous lollipop-like V2O5/ZnO array: A promising composite nanostructure for visible light photocatalysis. Langmuir, 2010, 26(14): 11615-11620.
|
[19] |
CHO S H, JANG J W, KIM J W, et al. Three-dimensional type II ZnO/ZnSe heterostructures and their visible light photocatalytic activities. Langmuir, 2011, 27(16):10243-10250.
|
[20] |
CAO X B, CHEN P, GUO Y P. Decoration of textured ZnO nanowires array with CdTe quantum dots: enhanced light-trapping effect and photogenerated charge separation. J. Phys. Chem. C, 2008, 112(51): 20560-20566.
|
[21] |
ZHAI J L, WANG L L, WANG D J, et al. Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room temperature by visible-light activation. ACS Appl. Mater. Interfaces, 2011, 3(7): 2253-2258.
|
[22] |
WALSH A, SILVA J L F D, WEI S H, et al. Nature of the band gap of In2O3 revealed by first-principles calculations and X-ray spectroscopy. Phys. Rev. Lett., 2008, 100(16): 167402.
|
[23] |
LV J, KAKO T, LI Z S, et al. Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles. J. Phys. Chem. C, 2010, 114(13): 6157-6162.
|
[24] |
CHANG W K, RAO K K, KUO H C, et al. A novel core-shell like composite In2O3@CaIn2O4 for efficient degradation of methylene blue by visible light. Appl. Catal.A, 2007, 321(1): 1-6.
|
[25] |
DAI L, CHEN X L, JIAN J K, et al. Fabrication and characterization of In2O3 nanowires. Appl. Phys. A: Mater. Sci. Process., 2002, 75(6): 687-689.
|