无机材料学报 ›› 2014, Vol. 29 ›› Issue (1): 91-97.DOI: 10.3724/SP.J.1077.2014.13303

• 研究论文 • 上一篇    下一篇

Y替代对Yn(Ba0.8Bi0.2)1–nFe0.9Sn0.1O3负温度系数热敏陶瓷电学性能的影响

袁昌来1, 骆 颖2, 周秀娟1, 杨 云1, 陈国华1, 刘心宇1   

  1. (1. 桂林电子科技大学 材料科学与工程学院, 桂林 541004; 2. 桂林空军学院, 桂林 541004)
  • 收稿日期:2013-06-13 修回日期:2013-09-02 出版日期:2014-01-20 网络出版日期:2013-12-09
  • 基金资助:

    国家自然科学基金青年基金(51102055)

Effect of Y Substitution on Electrical Properties of Yn(Ba0.8Bi0.2)1–nFe0.9Sn0.1O3 Negative Temperature Coefficient Thermistor Ceramics

YUAN Chang-Lai1, LUO Ying2, ZHOU Xiu-Juan1, YANG Yun1, CHEN Guo-Hua1, LIU Xin-Yu1   

  1. (1. School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; 2. Guilin Academy of Air Force, Guilin 541004, China)
  • Received:2013-06-13 Revised:2013-09-02 Published:2014-01-20 Online:2013-12-09
  • Supported by:

    National Natural Science Foundation of China (51102055)

摘要: 采用传统的固相烧结法制备了Yn(Ba0.8Bi0.2)1–nFe0.9Sn0.1O3负温度系数热敏陶瓷。借助X射线衍射分析仪、扫描电镜、阻温测试仪和交流阻抗分析仪对这类热敏陶瓷的物相、显微结构、阻温特性和阻抗特征进行了表征分析。所得Yn(Ba0.8Bi0.2)1–nFe0.9Sn0.1O3热敏陶瓷为伪立方钙钛矿结构, 粒度约1.0 μm, 随Y含量增加晶格常数a变小; 其室温电阻率、热敏常数和活化能分别介于2.17~9.17 MΩ·cm、6757~7171 K和0.583~0.618 eV范围内, 且均随Y含量增加趋于增大。阻抗分析表明, 在n=0.02、0.04时, 陶瓷体电阻由晶界、晶壳和晶粒电阻构成, 其中晶粒电阻贡献最大; 而在n=0.06、0.08时, 陶瓷体电阻由晶界、畴壁和电畴三个部分构成, 其中电畴区域电阻贡献最大; 在限定的测量温度范围内, 晶界、晶壳、晶粒、畴壁和畴电阻均表现出负温度系数热敏行为。

关键词: 负温度系数热敏陶瓷, Yn(Ba0.8Bi0.2)1–nFe0.9Sn0.1O3, 电学性能, 阻抗分析

Abstract: Negative temperature coefficient thermistor ceramics based on Yn(Ba0.8Bi0.2)1–nFe0.9Sn0.1O3 were fabricated by conventional solid-state reaction techniques. Phases, microstructures, resistance-temperature curves and impedance characteristics of thermistor ceramics were characterized by X-ray diffraction, scanning electron microscope, resistance-temperature tester and ac impedance analyzer, respectively. Yn(Ba0.8Bi0.2)1–nFe0.9Sn0.1O3 thermistor ceramics with pseudo-cubic perovskite structure show average grain size of ~1.0 μm and the decreasing lattice parameter a with increase of Y content. Room-temperature resistivity, thermistor constant and activation energy of thermistor ceramics are in the range of 2.17–9.17 MΩ·cm, 6757–7171 K and 0.583–0.618 eV, respectively. When n = 0.02 and 0.04, the ceramic resistance is mainly attributed to the contribution of grain boundaries, grains and grain shells. Among them, the resistance value of grain is the highest one. However, for the ceramics with n = 0.06 and 0.08, the total resistance of thermistor ceramics is ascribed to the contribution of grain boundaries, domain walls and domains, and the domain regions show the larger resistance value than that of the other two elements. In the limited measured temperature range, all of grain boundaries, grain shells, grains, domain walls and domains show negative temperature coefficient thermistor behavior.

Key words: negative temperature coefficient thermistor ceramics, Yn(Ba0.8Bi0.2)1–nFe0.9Sn0.1O3, electrical properties, impedance analysis

中图分类号: