[1]Wachsman E D, Marlowe C A, Lee K T. Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ. Sci., 2012, 5(2): 5498-5509.[2]Jacobson A J. Materials for solid oxide fuel cells. Chem. Mater., 2009, 22(3): 660-674.[3]Jiang S P, Chan S H. A review of anode materials development in solid oxide fuel cells. J. Mater. Sci., 2004, 39(14): 4405-4439.[4]Cowin P I, Petit C T G, Lan R, et al. Recent progress in the development of anode materials for solid oxide fuel cells. Adv. Energy Mater., 2011, 1(3): 314-332.[5]Bi Z, Zhu J. A Cu-CeO2-LDC composite anode for LSGM electrolyte-supported solid oxide fuel cells. Electrochem. Solid-State Lett., 2009, 12(7): B107-B111.[6]Park S, Gorte R J, Vohs J M. Tape cast solid-oxide fuel cells for the direct oxidation of hydrocarbons. J. Electrochem. Soc., 2001, 148(5): A443-A447.[7]Park S, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265-267.[8]Yang L, Wang S, Blinn K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Science, 2009, 326(5949): 126-129.[9]McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells. Chem. Rev., 2004, 104(10): 4845-4866.[10]Marina O A, Bagger C, Primdahl S, et al. A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics, 1999, 123(1): 199-208. [11]Sun C W, Stimming U. Recent anode advances in solid oxide fuel cells. J. Power Sources, 2007, 171(2): 247-260.[12]Tao S, Irvine J T S. A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater., 2003, 2(5): 320-323.[13]Danilovic N, Vincent A, Luo J L, et al. Correlation of fuel cell anode electrocatalytic and ex situ catalytic activity of perovskites La0.75Sr0.25Cr0.5X0.5O3?δ (X=Ti, Mn, Fe, Co). Chem. Mater., 2010, 22(3): 957-965.[14]Tao S, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25) Cr0.5Mn0.5O3?δ, a redox-stable, efficient perovskite anode for SOFCs. J. Electrochem. Soc., 2004, 151(2): A252-A259.[15]van den Bossche M, McIntosh S. Pulse reactor studies to assess the potential of La0.75Sr0.25Cr0.5Mn0.4X0.1O3-δ (X= Co, Fe, Mn, Ni, V) as direct hydrocarbon solid oxide fuel cell anodes. Chem. Mater., 2010, 22(21): 5856-5865.[16]Jardiel T, Caldes M T, Moser F, et al. New SOFC electrode materials: The Ni-substituted LSCM-based compounds (La0.75Sr0.25) (Cr0.5Mn0.5?xNix)O3?δ and (La0.75Sr0.25)(Cr0.5?xNixMn0.5)O3?δ. Solid State Ionics, 2010, 181(19/20): 894-901.[17]Lu X, Zhu J. Cu(Pd)-impregnated La0.75Sr0.25Cr0.5 Mn0.5O3?δ anodes for direct utilization of methane in SOFC. Solid State Ionics, 2007, 178(25/26): 1467-1475.[18]Raza M, Rahman I, Beloshapkin S. Synthesis of nanoparticles of La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) perovskite by solution combustion method for solid oxide fuel cell application. J. Alloys Compd., 2009, 485(1/2): 593-597.[19]Raj E S, Irvine J T S. Synthesis and characterization of (Pr0.75Sr0.25)1-x Cr0.5Mn0.5O3?δ as anode for SOFCs. Solid State Ionics, 2010, 180(40): 1683-1689.[20]Kharton V, Tsipis E, Marozau I, et al. Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3-δ. Solid State Ionics, 2007, 178(1/2): 101-113.[21]Oishi M, Yashiro K, Sato K, et al. Oxygen nonstoichiometry and defect structure analysis of B-site mixed perovskite-type oxide (La, Sr)(Cr, M)O3?δ (M=Ti, Mn and Fe). J. Solid State Chem., 2008, 181(11): 3177-3184.[22]Fonseca F C, Muccillo E, Muccillo R, et al. Synthesis and electrical characterization of the ceramic anode La1-xSrxMn0.5Cr0.5O3. J. Electrochem. Soc., 2008, 155(5): B483-B487. [23]Lay E, Gauthier G, Rosini S, et al. Ce-substituted LSCM as new anode material for SOFC operating in dry methane. Solid State Ionics, 2008, 179(27): 1562-1566. |