无机材料学报 ›› 2013, Vol. 28 ›› Issue (9): 907-915.DOI: 10.3724/SP.J.1077.2013.12780
• 综述 • 下一篇
王桂强, 王德龙, 况 帅, 禚淑萍
收稿日期:
2012-12-23
修回日期:
2013-03-06
出版日期:
2013-09-20
网络出版日期:
2013-08-14
基金资助:
国家自然科学基金 (21273137); 山东省自然科学基金 (ZR2010BM038)
WANG Gui-Qiang, WANG De-Long, KUANG Shuai, ZHUO Shu-Ping
Received:
2012-12-23
Revised:
2013-03-06
Published:
2013-09-20
Online:
2013-08-14
Supported by:
National Natural Science Foundation of China (21273137); Natural Science Foundation of Shandong Province (ZR2010BM038)
摘要: 由于成本低、制作工艺简单、光电转换效率高, 染料敏化太阳能电池被认为是传统太阳能电池最有力的竞争者之一。染料敏化太阳能电池常用的对电极是Pt电极, Pt价格高, 储量少, 因此寻找一种价格便宜且催化性能较好的材料代替Pt制备对电极是目前的研究热点。过渡金属化合物品种多、制备过程简单、价格低且催化性能好, 近年来受到人们的广泛关注, 是代替Pt制备染料敏化太阳能电池对电极最好的材料之一。本文综述了染料敏化太阳能电池过渡金属化合物对电极的研究现状, 对过渡金属化合物对电极的性能特点及今后研究的重点进行了分析。
中图分类号:
王桂强, 王德龙, 况 帅, 禚淑萍. 染料敏化太阳能电池用过渡金属化合物对电极的研究进展[J]. 无机材料学报, 2013, 28(9): 907-915.
WANG Gui-Qiang, WANG De-Long, KUANG Shuai, ZHUO Shu-Ping . Research Progress on Transition Metal Compound Used as Highly Efficient Counter Electrode of Dye-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2013, 28(9): 907-915.
[1] O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740.[2] Nazerruddin M K, Kay A, Rodicio I, et al. Conversion of TiO2 by Cis-x2Bis(2,2?-bipyridine-4,4?-dicarboxylate) ruthenium (II) charge-transfer sensitized on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc., 1993, 115(14): 6382-6390.[3] Hagfeldt A, Gr?etzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev., 1995, 95(1): 49-68.[4] Gr?tzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338-344.[5] Gr?tzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem., 2004, 164(1/2/3): 3-14.[6] Yanagida S, Yu Y, Manseki K. Iodine/iodide-free dye-sensitized solar cells. Acc. Chem. Res., 2009, 42(11): 1827-1838.[7] Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells. Chem. Rev., 2010, 110(11): 6595-6663.[8] Vougioukalakis G, Philippopoulos A, Stergiopoulos T. Contributions to the development of ruthenium-based sensitizer for dye-sensitized solar cells. Coord. Chem. Rev., 2011, 255(21): 2602-2621.[9] Yella A, Lee H, Tsao H, et al. Porphyrin-sensitized solar cell with cobalt (II/III) based redox electrolyte exceed 12% efficiency. Science, 2011, 334(6056): 629-634.[10] Papageorgiou N, Maier W F, Gr?tzel M. An iodine/triiodide reduction electrocatalyst for aqueous and organic media. J. Electrochem. Soc., 1997, 114(3): 876-884.[11] Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cells configurations. Coord. Chem. Rev., 2004, 248(13): 1421-1446.[12] Wang G, Lin R, Lin Y, et al. A novel high-performance counter electrode for dye-sensitized solar cell. Electrochim. Acta, 2005, 50(28): 5546-5552.[13] Calogero G, Calandra P, Irrera A, et al. A new transparent and low-cost counter electrode based on Pt nanoparticles for dye-sensitized solar cells. Energy Environ. Sci., 2011, 4(5): 1838-1844.[14] Sun K, Fan B, Ouyang J. Nanostructured films deposited by polyol reduction of a platinum precursor and their application as counter electrode of dye-sensitized solar cells. J. Phys. Chem. C, 2010, 114(9): 4237-4244.[15] Kay A, Gr?tzel M. Low cost photovoltaic modules base on dye-sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells, 1996, 44(1): 99-117.[16] Murakami T N, Ito S, Wang Q, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrode. J. Electrochem. Soc., 2006, 153(12): A2255-A2261.[17] Joshi P, Zhang L, Chen Q, et al. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl. Mater. Interface, 2010, 2(12): 3572-3577.[18] Wu M, Lin. X, Wang . T, et al. Low-cost dye-sensitized solar cells based on nine kinds of carbon counter electrode. Energy Environ. Sci., 2011, 4(6): 2308-2315.[19] Cha S, Koo B, Lee D. Pt-free transparent counter electrode for dye-sensitized solar cells prepared from carbon nanotube micro-balls. J. Mater. Chem., 2010, 20(4): 656-662.[20] Zhao B, Huang H, Jiang P, et al. Flexible counter electrode based on mesoporous carbon aerogel for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C, 2011, 115(45): 22615-22621.[21] Wang H, Hu Y. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci., 2012, 5(8): 8182-8188.[22] Trancik J, Barton S, Hone J. Transparent and catalytic carbon nanotube films. Nano Lett., 2008, 8(4): 982-987.[23] Li K, Luo Y, Yu Z, et al. Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochem. Commun., 2009, 11(7): 1346-1349.[24] Jiang Q, Li G, Gao X. Highly ordered mesoporous carbon array from natural wood materials as counter electrode of dye-sensitized solar cells. Electrochem. Commun., 2010, 12(7): 924-927.[25] Xiao J, Chen L, Yanagida S. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J. Mater. Chem., 2011, 21(12): 4644-4649.[26] Bu C, Tai Q, Guo S. A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell. J. Power Source, 2013, 221(1): 78-83.[27] Sakurai S, Jiang H, Takahashi M. Enhanced performance of a dye-sensitized solar cell with a modified poly(3,4-ehtylenedioxy- thiophene)/TiO2/FTO counter electrode. Electrochim. Acta, 2009, 54(23): 5463-5469.[28] Wu L, Li Q, Fan L, et al. High-performance polypyrrole nanoparticles counter electrode for a dye-sensitized solar cells. J. Power Source, 2008, 181(1): 172-176.[29] Sun H, Luo Y, Zhang Y, et al. In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J. Phys. Chem. C, 2010, 114(26): 11673-11679.[30] Tai Q, Chen B, Guo F, et al. In situ prepared transparent ployaniline electrode and its application in bifacial dye-sensitized solar cell. ACS Nano, 2011, 5(5): 3795-3799.[31] Hong W, Xu Y, Shi G, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes for dye-sensitized solar cells. Electrochem. Commun., 2008, 10(10): 1555-1558.[32] Zhang J, Hreid T, Li X, et al. Nanostructured polyaniline counter electrode for dye-sensitized solar cells: fabrication and investigation of its electrochemical formation mechanism. Electrochim. Acta, 2010, 55(11): 3664-3668.[33] Chen J, Li B, Zheng J, et al. Polyaniline/carbon film as flexible counter electrode in Pt-free dye-sensitized solar cells. Electrochim. Acta, 2011, 56(12): 4624-4630.[34] Wu M, Ma T. Pt-free catalysts as counter electrodes in dye-sensitized solar cells. ChemSusChem, 2012, 5(8): 1343-1357.[35] Wang M, Anghel A, Marsan B, et al. CoS supersedes Pt as an efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc., 2009, 131(44): 15976-15977.[36] Lin J, Liao J, Chou S. Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim. Acta, 2011, 56(24): 8818-8826.[37] Lin J, Liao J. Mesoporous electrodeposited CoS film as a counter electrode in dye-sensitized solar cells. J. Electrochem. Soc., 2012, 159(2): D65-D71.[38] Lin J, Liao J, Wei T. Honeycomb-like CoS counter electrodes for transparent dye-sensitized solar cells. Electrochem. Solid-State Lett., 2011, 14(4): D41-D44.[39] Kung C, Chen H, Lin C, et al. CoS Acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cells. ACS Nano, 2012, 6(8): 7016-7025.[40] Chi W, Han J, Yang S, et al. Empolying electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrode. Chem. Commun., 2012, 48(76): 9501-9503.[41] Sun H, Qin D, Huang S, et al. Dye-sensitized solar cells with NiS counter electrode electrodeposited by a potential reverse technique. Energy Environ. Sci., 2011, 4(8): 2630-2637.[42] Ku Z, Li X, Liu G, et al. Transparent NiS counter electrodes for thiolate/disulfide mediated dye-sensitized solar cells. J. Mater. Chem. A, 2013, 1(2): 237-240.[43] Zhao W, Lin T, Sun S, et al. Oriented single-crystalline NiS nanorod arrays “two-in-one” counter electrode for dye-sensitized solar cells. J. Mater. Chem. A, 2013, 1(2): 194-198.[44] Wu M, Wang Y, Lin X, et al. Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys., 2011, 13(43): 19298-19301.[45] Jiang Q, Li J, Gao X. Highly ordered TiN nanotube arrays as counter electrode of dye-sensitized solar cells. Chem. Commun., 2009, 45(44): 6720-6722.[46] Zhang X, Chen X, Dong S, et al. Hierarchical micro/nano structured titanium nitride spheres as high performance counter electrode for a dye-sensitized solar cell. J. Mater. Chem., 2012, 22(1): 6067-6071.[47] Jiang Q, Li G, Liu S, et al. Surface-nitrided nickel with bifunctional structure as low-cost counter electrode for dye-sensitized solar cells. J. Phys. Chem. C, 2010, 114(31): 13397-13401.[48] Li G, Song J, Pan G, et al. Highly Pt-like electrocatalytic activity of transition metal nitride foe dye-sensitized solar cells. Energy Environ. Sci., 2011, 4(5): 1680-1683.[49] Wu M, Zhang Q, Xiao J, et al. Two flexible counter electrode based on molybdenum and tungsten nitrides for dye-sensitized solar cells. J. Mater. Chem., 2011, 21(29): 10761-10766.[50] Wu M, Lin X, Guo W, et al. Great improvement of catalytic activity of the oxide counter electrode fabricating in N2 atmosphere for dye-sensitized solar cells. Chem. Commun., 2013, 49(11): 1058-1060.[51] Yun S, Wang L, Guo W, et al. Non-Pt counter electrode catalysts using tantalum oxide for low-cost dye-sensitized solar cells. Electrochem. Commun., 2012, 24(1): 69-73.[52] Wu M, Lin X, Hagfeldt A, et al. A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chem. Commun., 2011, 47(15): 4535-4537.[53] Lin X, Wu M, Wang Y, et al. Novel counter electrode catalyst of niobium oxide supersede Pt for dye-sensitized solar cells. Chem. Commun., 2011, 47(41): 11489-11491.[54] Wu M, Lin X, Hagfeldt A, et al. Low cost molybdenum carbide and tungsten carbide counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed., 2011, 50(15): 3520-3524.[55] Jang J, Ham D, Ramasamy E, et al. Platinum-free tungsten carbide as effective counter electrode for dye-sensitized solar cells. Chem. Commun., 2010, 46(45): 8600-8602.[56] Ko A, Oh J, Lee Y, et al. Characterizations of tungsten carbide as non-Pt counter electrode in dye-sensitized solar cells. Mater. Lett., 2011, 65(14): 2220-2223.[57] Krawiec P, De Colar P L, Glaser R, et al. Oxide foams for the synthesis of high-surface-area vanadium nitride catalysts. Adv. Mater., 2006, 18(4): 505-508.[58] Bennett L H, Cuthill J R, McAlister A J, et al. Electronic and catalytic properties of tungsten carbide. Science, 1975, 187(4179): 858-859.[59] Sun Y, Wu Q, Shi G. Graphene based now energy materials. Energy Environ. Sci., 2011, 4(4): 1113-1132.[60] Pang S, Hernandez Y, Feng X, et al. Graphene as transparent electrode materials of organic electronics. Adv. Mater., 2011, 23(25): 2779-2795.[61] Jiang L, Lu X. Graphene application in solar cells. J. Inorganic Mater., 2012: 27(11): 1129-1137.[62] Kavan L, Yum J, Gr?tzel M, et al. Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets. ACS Nano, 2011, 5(1): 165-172.[63] Kavan L, Yum J, Gr?tzel M, et al. Graphene nanoplatelets cathode for Co(III)/II mediated dye-sensitized solar cells. ACS Nano, 2011, 5(11): 9171-9178.[64] Jang S, Kim Y, Kim D, et al. Electrodynamically sprayed thin film of aqueous dispersible graphene nanosheets: highly efficient cathode for dye-sensitized solar cells. ACS Appl. Mater. Interface. 2012, 4(7): 3500-3507.[65] Choi H, Kim H, Hwang S, et al. Graphene counter electrode for dye-sensitized solar cells by electrophoretic deposition. J. Mater. Chem., 2011, 21(21): 7548-7551.[66] Roy-Mayhew J D, Bozym D J, Punckt C, et al. Functionalized graphene as catalytic counter electrode in dye-sensitized solar cells. ACS Nano, 2010, 4(10): 6203-6211.[67] Zhang H, Neo C, Mei X, et al. Reduced oxide graphene film fabricated by gel coating and its application as Pt-free counter electrode of highly efficient iodide/triodide dye-sensitized solar cells. J. Mater. Chem., 2012, 22(29): 14465-14474.[68] Xu Y, Bai H, Li G, et al. Flexible graphene film via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc., 2008, 130(18): 5856-5857.[69] Zhang D, Li X, Li H, et al. Graphene based counter electrode for dye-sensitized solar cells. Carbon, 2011, 49(15): 5382-5388.[70] Duo Y, Li G, Song J, et al. Nickel phosphide-embedded graphene as counter electrode of dye-sensitized solar cells. Phys. Chem. Chem. Phys., 2012, 14(4): 1339-1342.[71] Das S, Sudhagar P, Nagarajan S, et al. Synthesis of graphene-CoS electrocatalytic electrodes for dye-sensitized solar cells. Carbon, 2012, 50(13): 4815-4821.[72] Yue G, Lin J, Tai S, et al. A catalytic composite film MoS2/graphene flakes as a counter electrode for Pt-free dye-sensitized solar cells. Electrochim. Acta, 2012, 85(1): 162-168.[73] Liu C, Tai S, Chou S, et al. Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. J. Mater. Chem., 2012, 22(39): 21057-21064.[74] Umeyama T, Imahori H. Carbon nanotube-modified electrodes for solar energy conversion. Energy Environ. Sci., 2008, 1(1): 120-133.[75] Ahmad K, Pan W. Dramatic effect of multiwalled carbon nanotube on the electrical properties of alumina ceramic nanocomposites. Compos. Sci. Technol., 2009, 69(7/8): 1016-1021.[76] Lee W, Ramasamy E, Lee D, et al. Efficient dye-sensitized solar cell with catalytic multiwalled carbon nanotube counter electrode. ACS Appl. Mater. Interface, 2009, 1(6): 1145-1149.[77] Seo S, Kim S, Koo B, et al. Influence of electrolyte composition on the photovoltaic performance and stability of dye-sensitized solar cell with multiwalled carbon nanotube catalyst. Langmuir, 2010, 26(12): 10341-10346.[78] Cho H, Kim H, Hwang S, et al. Dye-sensitized solar cells using graphene-based carbon nanocomposite as counter electrode. Sol. Energy Mater. Sol. Cell, 2011, 95(1): 323-325.[79] Trancik J, Barton S, Hone J. Transparent and catalytic carbon nanotube films. Nano Lett., 2008, 8(4): 982-987.[80] Ramasamy E, Lee W, Lee D, et al. Spray coated multi-walled carbon nanotube counter electrode for triiodide reduction in dye-sensitized solar cells. Electrochem. Commun., 2008, 10(7): 1087-1089.[81] Suzuki K, Yamaguchi M, Kumagai M, et al. Application carbon nanotubes to counter electrode of dye-sensitized solar cells. Chem. Lett., 2003, 32(1): 28-29.[82] Tai S, Liu C, Chou S, et al. Few-layer MoS2 nanosheets coated on multiwalled carbon nanotubes as low-cost highly electrocatalytic counter electrode for dye-sensitized solar cells. J. Mater. Chem., 2012, 22(47): 24753-24759.[83] Song J, Li G, Xiong F, et al. Synergistic effect of molybdenum nitride and carbon nanotube on electrocatalysis for dye-sensitized solar cells. J. Mater. Chem., 2012, 22(38): 20580-20585.[84] Li J, Wang F, Jiang Q, et al. Carbon nanotube with titanium nitride as a low-cost counter electrode materials for dye-sensitized solar cells. Angew. Chem. Int. Ed., 2010, 49(21): 3653-3656.[85] Yue G, Wu J, Lin J, et al. A counter electrode of multiwalled carbon nanotube Carbon decorated with tungsten sulfide used in dye-sensitized solar cells. Carbon, 2013, 55(1): 1-9.[86] Lin J, Liao J, Hung T. A composite counter electrode of CoS/MWCNT with highly electrocatalytic activity for dye-sensitized solar cells. Electrochem. Commun., 2011, 13(9): 977-980.[87] Xiao Y, Wu J, Lin J, et al. Pulse electrodeposition of CoS on the MWCNT/Ti as a high performance counter electrode for the Pt-free dye-sensitized solar cells. J. Mater. Chem. A, 2013, 1(4): 1289-1295.[88] Ryoo R, Joo S, Kruk M, et al. Ordered mesoporous carbon. Adv. Mater., 2001, 13(9): 677-681.[89] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials. Adv. Mater., 2006, 18(16): 2073-2094.[90] Candelaria S, Shao Y, Zhou W, et al. Nanostrucutred carbon for energy storage and conversion. Nano Energy, 2012, 1(2): 195-220.[91] Ramasamy E, Chun J, Lee J. Soft-template synthesized ordered mesoporous carbon counter electrode for dye-sensitized solar cells. Carbon, 2010, 48(15): 4563-4565.[92] Fang B, Fan S, Kim J, et al. Incorporation hierarchical nanostructured carbon counter electrode into metal-free organic dye-sensitized solar cell. Langmuir, 2010, 26(13): 11238-11243.[93] Wang G, Xing W, Zhuo S. Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. J. Power Source, 2009, 194(1): 568-573.[94] Ramasamy E, Lee J. Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells. Chem. Commun., 2010, 46(12): 2136-2138.[95] Srinivasu P, Islam A, Singh S O, et al. Highly efficient nanoporous graphitic carbon with tunable texture properties for dye-sensitized solar cells. J. Mater. Chem., 2012, 22(39): 20866-20869.[96] Wu M, Bai J, Wang Y, et al. Highly efficient phosphide/carbon counter electrode for both iodide and organic redox couples in dye-sensitized solar cells. J. Mater. Chem., 2012, 22(22): 11121-11127.[97] Wu M, Lin X, Hagfeldt A, et al. Low-cost Molybdenum carbide and tungsten carbide counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed., 2011, 50(13): 3520-3524.[98] Wu M, Lin X, Wang L, et al. In-situ synthesized economical tungsten oxide imbedded in mesoporous carbon for dye-sensitized solar cells as counter electrode catalyst. J. Phys. Chem. C, 2011, 115(45): 22598-22602.[99] Wu M, Lin X, Wang Y, et al. Economical Pt-free catalysts for counter electrode of dye-sensitized solar cells. J. Am. Chem. Soc., 2012, 134(7): 3419-3428. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[13] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[14] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||