[1] Zhu Z W, Cheng X G, Huang L J, et al. Light field intensification induced by nanoinclusions in optical thin-films. Appl. Surf. Sci., 2012, 258(12): 5126–5130.[2] Liang L P, Zhang L, Sheng Y G, et al. Studies on the laser-induced damage resistance of Sol-Gel derived ZrO2-TiO2 composite high refractive index films. Acta Physica Sinica, 2007, 56(6): 3596–3601.[3] Zhang Y, Gao F M, Gao L H, et al. Study of tri-layer antireflection coatings prepared by Sol-Gel method. Sol-Gel Sci. Technol., 2012, 62(2): 134–139.[4] Jeevajothi K, Crossiya D, Subasri R. Non-fluorinated, room temperature curable hydrophobic coatings by Sol-Gel process. Ceram. Int., 2012, 38(4): 2971–2976.[5] Li T J, Chen P Y, Nien P C, et al. Preparation of a novel molecularly imprinted polymer by the Sol-Gel process for sensing creatinine. Anal. Chim. Acta, 2012, 711: 83–90.[6] Hwang S M, Park G C, Lim J H, et al. Phase and structural evolution of Sol–Gel synthesized ZrO2/Si thin films under heat treatment. J. Mater. Sci., 2012, 47(13): 5216–5221. [7] Liang L P, Zhang L, Xu Y, et al. Sol-Gel deposition of highly reflective multilayer coatings from PVP-ZrO2 hybrid systems. Acta Physica Sinica, 2006, 55(11): 6175–6183.[8] Thomas I M. Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44. Appl. Opt., 1992, 31(28): 6145–6149.[9] Floch H?G, Belleville P?F. A scratch-resistant single-layer antireflective coating by a low temperature Sol-Gel route. J. Sol-Gel Sci. Technol., 1994, 1(3): 293–304.[10] Shen J, Zhang Q Y, Wang J, et al. Sol-Gel processing of zirconia coating for HR mirrors with high laser damage threshold. J. Sol-Gel Sci. Technol., 2000, 19(1/2/3): 271–274.[11] Oda S, Uchiyama H, Kozuka H. Sol–Gel-derived titania- hydroxypropylcellulose hybrid thin films of high refractive indices: solution components affecting the refractive index and uncracking critical thickness. J. Sol-Gel Sci. Technol., 2012, 61(3): 484–493.[12] Pradhan S S, Pradhan S K, Bhavanasi V, et al. Low temperature stabilized rutile phase TiO2 films grown by sputtering. Thin Solid Films, 2012, 520(6): 1809–1813.[13] Antonello A, Brusatin G, Guglielmi M, et al. Nanocomposites of titania and hybrid matrix with high refractive index. J. Nanopart. Res., 2011, 13(4): 1697–1708.[14] Wang S A, Li Y P, Fei X L, et al. Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy-siloxane modified SiO2 nanoparticles: a possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle. J. Colloid Interface Sci., 2011, 359(2): 380–388.[15] Chinaglia D L, Gregorio R, Vollet D R. Structural modifications in stretch-induced crystallization in PVDF films as measured by small-angle X-ray scattering. J. Appl. Polym. Sci., 2012, 125(1): 527–535.[16] Bananej A, Hassanpour A, Razzaghi H, et al. The effect of porosity on the laser induced damage threshold of TiO2 and ZrO2 single layer films. Opt. Laser. Technol., 2010, 42(8): 1187–1192.[17] Mendez V J, Mendoza S R, Valdez C L. Control of the polymerization process of multicomponent(Si, Ti, Zr) sols using chelating agents. J. Non-Cryst. Solids, 2001, 288(1/2/3): 200–209.[18] Adamczyk A, Dlugon E. The FTIR studies of gels and thin films of Al2O3-TiO2 and Al2O3-TiO2-SiO2 systems. Spectrochim. Acta, 2012, 89: 11–17. |